Category Archives: Varroa

Seasonal changes

At the beginning of the season, after the wettest winter for 100+ years, I rebuilt the rickety scaffold-plank bridge I use to cross the burn to get to my apiary and bee shed. The herbage had been flattened by flooding and the general die-back of winter. Access was easy … if a bit squelchy.

Before ...

Before …

Seven months later the bridge, the burn, the shed and the apiary have all but disappeared behind the luxuriant growth of reeds and weeds. Over the burn is an extensive patch of waist high nettles and long tussocky grass. If there’s been any recent rain the herbage remains damp and my bee suit gets saturated … if for any reason I have to make repeated trips (such as removing full supers [in my dreams!]) the water runs down my legs and fills my boots. Lovely.

After ...

After …

Wildlife near the apiary

The overgrown little patch of woodland is a great spot for wildlife, with regular sightings of sparrowhawks jinking through trying to catch the small birds unawares. All of the regular woodland and parkland birds are present, with increasing numbers of mixed parties of finches now we’re into early autumn. There are great spotted and, much less frequently, green woodpeckers to be seen and the presence of the latter might mean I have to protect my hives in the winter (although I had no problems on this site last winter it never got really cold which is when the yaffles cause a problem). Buzzards wheel overhead – incessantly mewing now as the adults start to ignore their young and so force them to find their own territories. Until recently the air was filled with swallows and martins. There were so many of them I was concerned about losing queens on mating flights. However, it was the June weather that was the biggest handicap, and I think I only had one mating nuc in which the virgin queen simply disappeared.

Common spotted orchid

Common spotted orchid …

I’m hopeless at plant identification but think this is a Common Spotted Orchid. The area around the apiary has hundreds of these in late June/early July. There’s an interesting Citizen Science survey (https://www.orchidobservers.org/) on how climate change is affecting the flowering period of orchids and they have a comprehensive identification guide (16Mb PDF download … you have been warned), together with distribution maps. Finally, the damp grassland and the nearby burn mean there are loads of frogs to be seen … which probably also explains the near-universal presence of herons.

On a balmy summer afternoon – not completely unheard of this far North – the air is filled with the sound of bees going to and from the hives, making this an idyllic spot.

End of the season

I usually reckon that the end of September is the end of the bee season. Certainly this year – my first full season in Scotland – it is. Honey supers were taken off in late August/early September and there’s been almost no nectar coming in since the middle of August. The ivy has yet to start properly and there’s no balsam in range of my main apiaries. Colonies have been treated for Varroa – one repeatedly – and all have large blocks of fondant to keep them company for the next couple of weeks. All the hives are warm and watertight. There’s a few last-minute jobs to do … a final tidy of the bee shed, stacking supers and drawn brood comb out of reach of wax moths and acetic acid treatment where appropriate to sterilise comb.

Since the bees are safely tucked away for the winter I can now relax …

Cheers

Cheers

ICE ICE baby 

This post was written a week or two ago as I’m currently at ICE 2016, the International Congress of Entomology, talking about our work on DWV. The scope (and number of attendees … ~6000) of this conference is huge and includes at least 10 sessions covering bees. If the jet lag doesn’t finish me off I’ll take some comprehensive notes and report on some of the more interesting talks in the coming weeks. Normal service will be resumed by November.


Yaffle is an English folk name for the green woodpecker (Picus viridis) derived from its laughing call, which also probably explains the wonderful alternatives of laughing Betsey, yaffingale, yappingale and Jack Eikle. Hearing the yaffle call is supposed to be associated with the onset of rain, which probably accounts for the other names of rain-bird, weather cock and wet bird.

Ice ice baby is a hip hop song by Vanilla Ice from ’89/’90 … coincidentally it’s about South Florida, which is where the ICE 2016 conference is being held. I can’t stand hip hop 😉

Same time, next year

About this time last year a swarm arrived in a bait hive in my back garden in Fife. Almost exactly one year later a different bait hive in the same spot was occupied by another swarm … or, possibly, a very good-sized cast.

The bait hive was being investigated by scout bees for a few days but on 6th, which was a very warm day here in Fife, the numbers increased markedly from a couple of dozen to a hundred or more. On my return from work on the following day the swarm was in residence. My neighbour reported seeing a ‘huge swarm arriving’ at about 11am.

Foundationless frames and bait hives

The hive contained a single old, dark brood frame and about five foundationless frames, together with a cotton bud dipped in lemongrass oil. I’ve previously described why I think foundationless frames are so convenient for bait hives – they provide the bees with guides to build new comb without taking up significant space in the box. It’s worth remembering that the scout bees are seeking out a sheltered, south facing, bee-smelling (ideally), empty space of about 40 litres volume i.e. about the same as a single National brood box. Foundationless frames take up little space, but mean that an arriving swarm can start building new comb immediately … and they do.

I posted a photo last week of a swarm from the bee shed that had clustered because the queen was clipped and so unable to fly. I dealt with the swarm within a couple of hours of it settling. Once cleared, the wall of the bee shed was dotted with small crescents of wax as the bees had already started to build new comb. In the bait hive, when checked on the evening of the 8th (less than 48 hours after the bees arrived) they were well on their way to drawing out the first three foundationless frames, with the first of these being half full of nectar, presumably from the dregs available in the nearby OSR fields.

Mite treatment be needed?

Almost certainly … and there’s no better time. When swarms leave a hive they take with them up to 35% of the Varroa population as phoretic mites. A large swarm from a heavily infested hive can therefore introduce an unhealthy dose of virus-riddled mites to your apiary. These will rapidly spread to your other hives. I therefore routinely treat swarms with suitable miticides soon after they arrive, well before any brood is sealed. I don’t look for DWV symptoms or bother searching for signs of phoretic mites, I just treat. Due to work commitments this swarm had to be treated on the third day after arrival, before I was even certain whether the queen was laying or not. Within the first 24 hours after treatment (with sublimated oxalic acid) there were about 40-50 mites on the board, with more falling over the next couple of days. It’s far easier and more effective to treat when there’s no brood present and so give the colony the very best chance of getting well established without a pathogenic virus load.

Finally, after a day of heavy rain, I took advantage of the bees being all ‘at home’, sealed the entrance and relocated them to another apiary to make space for a replacement bait hive on the same spot … on the off chance that swarming here isn’t over yet.

If it is, then there’s always the same time, next year.


Same time, next year was a 1978 romantic comedy starring Alan Alda and Ellen Burstyn about a couple, married to others, who meet by chance, develop an “instant rapport” or at least “really hit it off” (one of the quotes from the film) and then meet again, year after year, both gradually changing, ageing and dealing with life’s crises.

All together now

This is the last of a short series of related posts on rational Varroa control. It brings together the key points made on the choice of how and when to treat, coupled with a treatment strategy that minimises the influence of bees drifting between colonies. The latter is best summarised in three words … coordinated Varroa treatment.

Coordinated Varroa treatment makes sense

Abandoned hives

Abandoned hives …

Most beekeepers treat their own colonies together … it’s logical, easier and cost effective. But what about the other beekeepers in the shared association apiary? What about the colonies two gardens away? What about the large row of colonies in the bottom of the adjacent field? What about that abandoned hive in the hedgerow over the road? What about the feral colony in the church tower? All of these are a potential source of reinfestation. After a week or two of miticide treatment your own colonies are likely to be largely free of phoretic mites … but all those nearby untreated (or yet to be treated, or ineffectively treated … or just plain forgotten) colonies can act as a source of mites and viruses from drifting workers and drones. These will infest and infect your colonies. Robbing bees – not the maelstrom of foragers ripping a colony apart that most beekeepers would recognise, but the silent robbing that can occur largely unseen and unsuspected in many apiaries – will bring a smorgasbord of virus-loaded mites and workers to your recently-treated hives. Remember also, your colonies may well be robbing other untreated, mite-infested colonies nearby. If all colonies ‘within range’ (see below) were treated at the same time these bee behaviours (drifting, robbing) that cannot be altered would have far less impact in transferring mites and viruses.

Coordinated Varroa treatment – over a wide geographic area – hasn’t been widely investigated in the UK. In Europe there have been a number of coordinated treatment trials, for example in isolated mountain valleys, where the geography provides a barrier to bee movement. Due to the unregulated and often undocumented nature of beekeeping in the UK it may well be more difficult to organise effectively. However, this isn’t a reason coordinated Varroa treatment shouldn’t be attempted. There are precedents in the salmon farming industry where all cages within a single water catchment area must be coordinately treated – both in terms of time and (I believe) the compound(s) used for controlling sea lice. This isn’t voluntary because it’s been shown to be effective.

What’s ‘within range‘?

One mile radius ...

One mile radius …

Drifting of foragers and robbing etc. are distance-dependent activities. The more widely separated colonies are, the less likely they are to be an issue. This was amply demonstrated in the recent comments by Tom Seeley that feral colonies hived and co-located in apiaries succumbed to mite-transmitted virus infections, whereas those sited – individually – at least 30 metres apart had lower mite counts and survived better (Sharashkin, L [2016], ABJ 156:157). So perhaps all colonies within 30 metres should be treated together?

Clearly this is too low a limit. Firstly, we know bees can travel much further and the studies described by Seeley didn’t test whether colonies survived even better if spaced even further apart. Secondly, the feral colonies Seeley studies are naturally located approximately half a mile apart from each other. Whilst this is undoubtedly influenced by the availability of hollow trees it suggests that the range could usefully be extended to at least half a mile. I’ve certainly seen robbing occurring between colonies located at least 500 metres apart.

Since the effective limit over which re-infestation might occur isn’t known it perhaps make sense to throw the net a little more widely … a mile for example? This is a convenient distance … covering most beekeepers within a small village in a rural area, those sharing adjacent fields in farmland or perhaps a number of urban apiaries. It’s also a manageably small area, where personal contact and friendly agreement should be sufficient to coordinate treatment. Do you know the location of all of the colonies within a mile of your own? Google maps can help. So can local association membership, or simply accosting people you see wearing a beesuit. I knew of ~20 hives belonging to 4-5 beekeepers within a mile of my previous home apiary. Of course, with any sort of migratory beekeeping – bringing colonies back from the heather, taking them to orchards – or simply moving nucs from a split colony to a new apiary, there’s a possibility of colonies with low mite levels getting exposed to colonies with a high level of infestation. For proper coordinated treatment these movements would have to be taken account of.

In our bee virus research we’re investigating the benefits of large scale coordinated Varroa treatment by working with all the beekeepers on a large island, where the sea provides a natural barrier to mites entering the test area. Over the next three years we will see how mites, and more importantly the viruses they transmit, are controlled by coordinating Varroa treatment within this defined area.

Coordinated Varroa treatment helps mitigate the effects of drifting and robbing between colonies, activities that are usually underestimated and that are known to transmit mites and (inevitably) viruses and other pathogens. This isn’t rocket science. It’s a logical response to the biology of bees and the pathogens that they carry.

How to treat

Spot the difference ...

Spot the difference …

Use a miticide that is appropriate for the conditions, use it according the manufacturers instructions and keep records of the treatment. There are no hard and fast rules, but it’s worth taking account of the following:

  • Avoid using pyrethroid-based miticides if there’s any evidence of resistance. Just because you get a high mite drop with Apistan doesn’t mean there isn’t an even larger resistant population left infesting your colony¹ … there are ways of checking this, perhaps you should?
  • Avoid using Apiguard unless the temperature really is high enough for it to work effectively, which means an average of 15°C for a month. If used at a sub-optimal temperature you’ll be leaving mites behind …
  • Avoid trickling oxalic acid/Api-Bioxal if there’s brood (sealed or unsealed) in the colony. It’s toxic to unsealed brood and the mites in sealed brood will escape unscathed …
  • Avoid vaporising Api-Bioxal unless you enjoy cleaning the gunky mess™ from the vaporiser. If vaporising oxalic acid ensure that the colony is broodless, or be prepared to repeat treatment three times at five day intervals to catch both phoretic and emerging mites …
  • Be aware that some miticides stop the queen from laying. Perhaps try and avoid these when you’re dependent on the colony raising the all-important winter bees that are going to get it through to the following Spring. I don’t actually know how much of an issue this is for colony health and survival, but it always concerned me when the queen went on a go-slow at the very time I wanted her to keep laying strongly through late August/early September.
  • Don’t reduce treatment doses or times … partial treatments are partially effective. This is also a great way to select for miticide-resistant Varroa (though whether they arise depends upon the mechanism of action – resistance to oxalic acid, formic acid and thymol has not been observed).

When to treat

Bee working ivy ...

Bee working ivy …

Earlier than you perhaps think to protect the winter bees from viruses. When I lived in the Midlands I would treat immediately after taking the summer honey crop – perhaps mid/late August. There’s later forage available – himalayan balsam and ivy – both of which some beekeepers either like or have a market for, but collecting it risks exposing the developing winter bees to high levels of Varroa and pathogenic viruses. Now I live in Scotland I’m going to have to develop alternative treatment schedules for colonies going to the heather – brood breaks and/or creative use of a vaporiser in June/July.

Treatment is only part of the solution though …

These articles on Varroa control have focused almost exclusively on miticide treatment. There are also a range of beekeeping practices that can contribute significantly to effective Varroa control, reducing the necessity to treat with chemicals. These include enforced brood breaks, shook swarms, drone brood uncapping, queen trapping and others. A proper integrated pest management strategy involves both chemical and beekeeping interventions to prevent the build up of dangerously high mite levels in the colony. Some of these will be covered in more detail during the coming season.


¹I think there’d be a case to ban the sale and use of Apistan for three years out of every four … pyrethroid resistance in mites appears to be detrimental in the absence of selection i.e. resistance is lost if the miticide is not used for a few years. That way, when used it would be devastatingly effective. This compares to the current situation where Apistan resistance is very widespread, and constantly selected for by continuing use of pyrethroids. Of course, there’s no way to enforce this – despite the fact it would probably be a great benefit for bee health – but now we’re back to the unregulated and undocumented nature of UK beekeeping.

When to treat?

Preparing Apiguard

Preparing Apiguard …

When and how do you treat colonies to have the greatest effect in minimising Varroa levels? At the end of this longer than usual post I hope you’ll appreciate that this is a different – and much less important –  question than “When is the best time to treat?”.

You probably use one of the treatments licensed and approved by the Veterinary Medicines Directorate (VMD), which include Apistan, Apivar, Apiguard, MAQS and Api-Bioxal. I’ve discussed the cost-effectiveness of these treatments recently. If used correctly, all exhibit much the same efficacy, reducing phoretic mite levels by 90-95% under optimal conditions. That being the case the choice between them can be made on other criteria … the ease of administration, the cost/treatment, the likelihood of tainting the honey crop, the compatibility with brood rearing, whether they mess up your vaporiser etc. After using Apiguard for several years, with oxalic acid (OA) dribbled in midwinter, my current preference – used throughout the 2015 season – is OA sublimation or vaporisation. This change was based on four things – efficiency, cost, ease of administration and how well it is tolerated by a laying queen. The how? you treat is actually reasonably straightforward.

When, not how, is the question

DWV symptoms

DWV symptoms

OK, but what about when? Because, if the treatments are all much of a muchness if used correctly, the when is actually the more important consideration. When might be partly dictated by the treatment per se. For example, Apiguard needs an active colony to transfer the thymol throughout the hive so the recommendation is to use it when the ambient temperature is at least 15ºC (PDF guidance from Vita). It’s worth stressing that this is the ambient temperature, not the temperature in the colony, which in places will be mid-30’s even when it’s much colder outside. At low ambient temperatures the colony becomes less active, and in due course clusters, meaning that Apiguard is not spread well throughout the colony, and is therefore much less effective. If you’re going to use Apiguard you must not leave treatment too late.

For readers in Scotland it’s interesting to note that the SBA annual survey by Peterson and Gray shows significant numbers still use Apiguard in September and October, months in which the mean daily maximum temperature is ~14°C and 11°C respectively … so the average daily temperature will be well below the recommended temperature for effective Apiguard use.

However, the when should be primarily informed by the  why you’re treating in the first place. It’s not really Varroa that’s the problem for bees, it’s the viruses that the mite transfers between bees when it feeds on developing pupae that cause all the problems. Most important of these is probably Deformed Wing Virus (DWV), but there are a handful of other viruses pathogenic to bees that are also transmitted. DWV causes the symptoms shown in the image above … these bees are doomed and will be ejected from the hive promptly. However, although apparently healthy (asymptomatic) bees have low levels of DWV, it’s been shown by Swiss researchers that DWV reduces the lifespan of worker bees, and that high levels of DWV in a colony are directly associated with – and causative of – overwintering colony losses. Therefore, the purpose of late summer/early autumn treatment is to reduce the Varroa levels sufficiently so that high levels of the virulent strains of DWV are not transmitted to the overwintering bees. When? therefore has to be early enough that this population, critical for overwinter survival, will live through to the spring – however long the winter lasts and however severe it is. However, before discussing when winter bees are reared it’s worth considering what happens if treatment is used early or late.

What happens if you treat early?

Mid June

Mid June treatment …

For example, mid-season or after the first honey crop comes off. Nothing much … other than slaughtering many of the phoretic mites. This is what most beekeepers would call “a result” 😉  Aside from possible undesirable side effects of treatment – like tainting honey, or preventing the queen from laying or even, with some treatments, queen losses – early treatment simply reduces mite levels. It’s important to remember that the levels may well not be reduced sufficiently to negate the need for a treatment later in the season … as long as there is brood being raised the mites will be reproducing (for example, look at the mid-June treatment generated using BEEHAVE modelling – image above). Furthermore, avoiding those undesirable side effects might require some ‘creative’ beekeeping (for example, clearing the supers and moving them to another hive) and will certainly inform the choice of treatment but, fundamentally, if the mite levels are high then treating earlier than is usual will benefit the colony, at least temporarily. If the mite levels – estimated from the disappointingly inaccurate mite drop perhaps – are dangerously high you should treat the colony.

What happens if you treat late in the season?

Isolation starvation ...

Isolation starvation …

In midsummer workers only live for ~40 days. If mite levels are high, virus transmitted to these workers will shorten their lives, so reducing the colonies’ foraging ability and – possibly – ability to defend itself against wasps or robbing late in the season. However, if you delay treatment until very late the lifespan of bees raised at the end of the season – the overwintering bees – will be reduced with potentially more devastating consequences. The usual winter attrition rate of workers will be higher. The cluster size of the colony will shrink faster than a colony with low mite levels. At some point the colony will cross a threshold below which it becomes non-viable. The cluster is too small to move in cold periods to new stores, resulting in the beekeeper finding a pathetic little cluster of bees in a colony that’s succumbed to isolation starvation. A larger cluster, spread across a greater area and more frames, is much more likely to span an area of sealed stores and be able to exploit it.

When are winter bees reared?

The apiary in winter ...

The apiary in winter …

In the Swiss study referred to above they looked at the longevity of winter bees. The title of the paper is “Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees”. We can use their data to infer when winter bees start to be reared in the colony and when mite treatments should therefore have been completed to protect these bees. Their studies were conducted in Bern, Switzerland, in 2007/08 where the average temperature in November/December that year was 3ºC. They first observed measurable differences in winter bee longevity (between colonies that subsequently succumbed or survived) in mid-November. This was 50 days after bees emerged and were marked to allow their age to be determined. By the end of November these differences were more pronounced. Therefore, by mid-November Varroa and virus-exposed winter bees are already exhibiting a reduced lifespan. Subtracting 50 days from mid-November means these bees must have emerged in late September. Worker development takes ~21 days, so the eggs must have been laid in the first week of September, and the developing larvae capped in mid-September.

To protect this population of overwintering bees in these colonies, mite treatments would have had to be completed by the middle of September, so that mite levels were sufficiently low that the developing larvae weren’t capped in a cell with a Varroa mite carrying a potentially lethal payload of DWV. For Apiguard treatment (which takes 2 x 14 days) this means treatment should have been started in mid-August. For oxalic acid vaporisation (which empirical tests suggest is best conducted three times at five day intervals) treatment would need to start no later than early September and preferably earlier as it is effective for up to a month.

Of course, these figures and dates aren’t absolute – the weather during the study would have influenced when the larvae would be raised as winter bees, with the increased fat deposits and other characteristics that are needed to support the colony survival through the winter. Despite the study being based in Switzerland my calculations on dates are probably broadly relevant to the UK … for example, the temperature during their study period is only about 1ºC lower than the 100 year average for Nov/Dec in Eastern Scotland where I now live.

In conclusion

That was all a bit protracted but it hopefully explains why it’s important to be selective about when you administer Varroa treatments. Chucking in a couple of trays of Apiguard in mid-August or mid-October has very different outcomes:

  • in mid-August the phoretic mite population should be decimated, reducing the transmission of virulent DWV to the all-important winter bees that are going to get the colony through the winter. This is a good thing.
  • in mid-October the mite population will be reduced (not decimated, as it’s probably too cool to effectively transfer the thymol around the hive – see above) but many of the winter bees will already have emerged, probably with elevated levels of DWV to which they will succumb in December or January. This is a bad thing.

Perhaps perversely, treating early enough to prevent the expected Varroa-mediated damage to developing winter bees is not be the best way to minimise mite numbers in the colony going into the winter. Using BEEHAVE I modelled the consequences of treating in the middle of each month between August and November¹. I used the default BEEHAVE setup as described previously. Figures plotted are the average of 3 simulations, each ‘primed’ with 20 mites at the start of the year.

Time of treatment and mite numbers

Time of treatment and mite numbers

There’s a lot on this graph. To show colony development I plotted numbers of eggs, larvae and pupae (left axis) as dotted red, blue and black lines respectively. Mite numbers are shown in solid lines – treated with a generic miticide in mid-July (black), mid-August (blue), mid-September (brown), mid-October (cyan) and mid-November (green). In each case the miticide is considered to be 95% effective at killing phoretic mites. The gold arrowhead indicates the period during which winter bees are developing in the colony, based upon the data from Dainat.

Oxalic acid trickling

Oxalic acid trickling

Treating at or before mid-August controls the late-summer build up of mites in the colony – look how the blue line changes direction. Mites that are not killed go on to reproduce in late September and early October, resulting in levels of ~200 at the year end. Remember that mites present in midwinter can, in the absence of sealed brood, be effectively controlled by trickling or vaporising oxalic acid (Api-Bioxal), and that this Christmas miticide application is particularly important if the autumn treatment has not been fully effective. In contrast, treating as late as October and November (cyan and green lines) exposes the developing winter bees to the highest mite levels that occur in the colony doing the year, and only then decimates the phoretic mite numbers, with those that remain being unable to reproduce effectively as the brood rearing period is almost over. Starting treatment in mid-September isn’t much different, in terms of exposing the winter bees to high mite levels, than starting later in the year.

So, within reason, treating earlier rather than later both reduces the maximum mite levels and helps protect the winter bees from virus exposure. Of course, treating as early as mid/late August may not be compatible with your main honey crop (particularly if you take hives to the heather) … but that’s another issue and one to be addressed in a future post.

STOP PRESS There is a very important follow-up article to this. Kick ’em when they’re down describes why it’s so important to treat during a broodless period in midwinter to minimise mite numbers at the start of the following year. Just treating in late summer is not sufficient … you’ll protect your winter bees, only for them to be targeted by mites the following Spring.


¹BEEHAVE makes a distinction between ‘infected’ and ‘uninfected’ Varroa, the proportions of which can be modified. This might (no pun intended) not accurately reflect the reality in the hive, where Varroa-mediated transmission of DWV results in the preferential amplification of virulent strains of the virus. I need to roll my sleeves up and delve into the code to see if the model can be altered to fully reflect our current understanding of the biology of the virus. This might take quite a while …

References

Overwintering honey bees: biology and management from the Grozinger lab.

Managing Varroa (PDF) by the National Bee Unit

 

The Drifters cont.

The Drifters ...

The Drifters …

Not the legendary American doo-wap/R&B vocal group but instead a quick follow-up to a recent post on drifting in honey bees. I discovered an interesting article in a 2011 issue of American Bee Journal in which Wyatt Mangum (Mangum, W. [2011] Varroa immigration and resistant mites ABJ 151:475) quantified mites introduced with bees from other colonies. The experiment was straightforward and quite clever … a number of colonies were prepared with very low mite numbers, overwintered and then miticides (unspecified, but from the remainder of the article I’m assuming Apistan) were applied continuously for the rest of the season. This would kill all the mites present. With a Varroa tray in place it was therefore possible to count newly introduced mites throughout the season. These must arrive with drifting workers, drones (not sure if drones ‘drift’ as such … perhaps there’s a better term for their itinerant wandering?), bees that have abandoned other colonies or potentially robbers. The newly infesting mites would of course be killed by the miticide after introduction and before reproduction. They could therefore easily be counted on the Varroa tray under the open mesh floor.

The results were striking … in one year between mid-May and early October an average of 1415 and 1001 mites were introduced to each of the seven ‘recipient’ colonies in two separate apiaries. Mite arrivals weren’t evenly spread, but peaked during a late summer dearth of nectar … perhaps, as suggested by the author, as other colonies started to run out of stores. The source colonies were not identified, but were not within the test apiaries. Whatever the cause, this represents a very significant influx of up to 7-10 mites per day. In Mangum’s experiment these mites could not replicate (due to the miticide that was always present). Had they been able to do so the impact on the recipient colony, in terms of numbers of mites transmitting viruses within the hive, would have been much greater.

The impact of drifting and mite reinfestation

The impact of drifting and mite reinfestation

Using BEEHAVE this impact can be modelled. In untreated colonies (solid lines), primed with 20 mites at the beginning of the year (and default conditions as previously described), the average mite level at the year end is ~430 (n=3) having reached a maximum of ~600. Using the same infestation period as reported by Mangum¹, with a mite infestation rate of 7/day (the lowest he observed), the average mite levels at the year end were ~2700 (n=3), with maximum levels reaching ~3800 in late summer (dotted lines). In this simulation the introduced mites can reproduce. Therefore, within just a few months, phoretic mites carried on workers and drones from other colonies, have the potential to raise mite levels in the recipient colony to dangerously high levels – significantly higher than the maximum recommended level of 1000/colony. This is potentially of fundamental importance in strategies to effectively control Varroa.  It should be noted that in a repeat of his study this large scale infestation was not observed. This suggests that this type of infestation – from outwith the apiary – may only be a problem in certain years or under specific conditions. One possibility that comes immediately to mind would be a collapsing feral colony or abandoned (or potentially not abandoned, but just completely ignored and untreated … or ‘abandoned‘ as some might say 😉 ) hive within foraging distance.

Ample opportunity ...

Ample opportunity …

Interestingly, a recent study has looked at the influence of a number of honey bee pathogens on drifting (or inter-colonial transmission as they rather long-windedly call it) behaviour. Of the viruses, Varroa and Nosema tested, only the presence of high mite levels influenced drifting … but not in the direction that might be expected. Distance between colonies in an apiary was the major factor that influenced drifting and ~17% of tested workers had drifted (with a third to half of these being apparently unrelated to other colonies in the test apiary). Surprisingly, colonies with high Varroa levels were more likely to acquire drifting workers, though the mechanism for this was unclear. The increased mixing through drifting would ensure that these colonies would likely end up with a greater diversity of viral and other pathogens though whether these colonies could, later in the season, act as a source rather than a sink for mites was not tested.

Drone

Drone …

Finally, returning to the subject of drifting bees and the ABJ … in the February 2016 issue there’s an interview with Tom Seeley (of Honeybee democracy fame … Sharashkin, L [2016], ABJ 156:157) in which he states that, when quantified, 34% of drones in his apiary colonies were from other hives. This article – on Surviving without Treatments: Lessons from Wild Bees – also discusses the importance of colony separation to coping with Varroa. The feral colonies Seeley studies are located at least half a mile apart in woodland. When recovered and relocated together in apiaries (‘beeyards’ as they’re called in the US) they rapidly succumb to mite-transmitted viral diseases, whereas those maintained some distance apart (30+ metres) survive. Seeley makes the point that pathogens evolving in closely-spaced colonies are likely to be more virulent, whereas those that are in distantly spaced colonies should be less virulent (or they’ll kill the host colony before being transmitted). Seeley is referring to the virulence of Varroa but I think his comments apply better to the viral payload carried by the mite. This is a relatively minor distinction but these observations further emphasise that drifting in honey bees is clearly a major factor in mite, and consequently disease, transmission … and therefore needs to be considered in control.

STOP PRESS – A recent Bee-L post highlighted a further study on the influence of re-infestation. Greatti et al., (1992) showed that ~2-14 mites/day/colony were acquired in their test apiary during June-August, and that this number rose to up to 75 mites/day/colony in September and October². This type of re-infestation can occur by drifting as already discussed, or by workers in the sentinel colonies robbing out mite-infested collapsing nearby hives or feral colonies.


¹In the Mangum study the mites did not infest the sentinel colonies at an even rate of 7+/day. Instead there was a marked peak in mid-season. I’ve not attempted to model this. Clearly if mites don’t arrive earlier in the season the overall levels would be lower (as they wouldn’t have the chance to reproduce). However, an influx of mites in mid/late-season might just arrive at the wrong time to damage the all-important winter bees … the topic of a future post.

²Greatti, M., Milani, N. and Nazzi, F., (1992). Reinfestation of an acaricide-treated apiary by Varroa jacobsoni Oud. Exp. Appl. Acarol., 16: 279-286

Vaporising Api-Bioxal

Vaporising Api-Bioxal leaves a burnt caramelised residue in the vaporiser. This is difficult to clean. Does this damage the vaporiser or make it work less efficiently?

Forget it ...

Forget it …

I remortgaged the house, took my kids out of university and cancelled both trips to Mauritius later this year, all so I could afford some Api-Bioxal (a snip at £10.99 for 35g from Thorne’s). Api-Bioxal is the VMD-approved oxalic acid-containing miticide. Only ‘containing’ as – according to the manufacturers instructions – only 88.9% of the dodgy-looking white crystalline powder is actually oxalic acid (OA). The remaining ~11% is a mixture of glucose and powdered silica (VMD documentation [MS Word]) . As cutting agents go, these are relatively harmless. Nevertheless, some have expressed concern that the presence of glucose might leave a horrible gunky mess (a widely accepted technical term) in the bottom of the vaporiser. Let’s see …

Since I’d promised to help a friend with vaporising a few hives that were disappointingly Varroa-riddled when treated earlier in the winter, this seemed a good opportunity to do a side-by-side comparison of Api-Bioxal and OA vaporisation – in terms of residues, not efficacy¹. My vaporiser is an ‘active’ model (made by Sublimox) in which the vaporised oxalic acid is forced out through a small nozzle in about 20-30 seconds (see video). In use, the OA crystals are dropped into a preheated pan – by inverting the Sublimox – so the temperature change from ambient to 157ºC happens more or less instantaneously. Any comments below therefore might not apply to the passive vaporisers like the “Varrox”, or the plethora of home-grown ones² on the forums or variants listed on eBay. In the majority of these types the powder is added to a pan which is then heated to the sublimation temperature³.

At the start of the trial the pan of the Sublimox was clean, contained no residues and was only slightly tarnished (from historical use). This machine has been used dozens of times previously and in each case has been washed out with clean water after use as instructed by the manufacturers.

After a single colony was treated with 1.6g of Api-Bioxal the pan of the Sublimox contained an obvious charred residue.

Single use ...

Single use …

We treated one further hive with Api-Bioxal and took another photograph of the vaporiser ‘pan’ which now contained an even more obvious charred caramelised deposit, bubbled and lumpy in places. This wasn’t a loose flaky deposit, it was burnt onto the base and lower sidewalls of the vaporiser ‘pan’.

Two treatments ...

Two treatments …

In use the ‘collar’ around the plastic (delrin?) cups used to deliver the OA/Api-Bioxal usually have slight traces of the powder left around them. These were particularly obvious when using Api-Bioxal though I’m not sure any greater amount of powder was left here … it just looked a lot worse. It was also more difficult to clean off than ‘pure’ OA.

Plastic cup ...

Plastic cup …

The caramelised charred residues remaining in the vaporiser after two Api-Bioxal treatments needed a combination of scraping with a knife and repeated rinsing with boiling water to remove it. This took several minutes and would clearly be impractical (and irritating) to do between treatments, meaning that the residues would build up quickly over time. Compare the first and second image in the series above to see how much residue builds up at each use (and see the note below regarding the amount vaporised).

Cleaned vaporiser ...

Cleaned vaporiser …

I then added 1.6g of standard oxalic acid dihydrate (Thorne’s) and vaporised it before immediately photographing the unwashed pan and cup. The photo below should therefore be compared directly with the first in this series. You can see the traces of OA powder at the end of the nozzle of the vaporiser, but the pan is completely clean and contains no additional charred and caramelised residues. This vaporisation was done ‘in the open’ (i.e. not into a hive) and it was interesting to see how long it took the extensive cloud of crystals – perhaps 5 x 2 x 2m in extent – to dissipate as it gently drifted away downwind.

Single OA use ...

Single OA use …

But it gets worse …

I actually used much less Api-Bioxal per hive than the manufacturers recommended 2.3g per colony (this is partly because there is published evidence that ~1.4g is sufficient and double that amount provides no increase in mite killing). I didn’t weigh the Api-Bioxal but used one measuring scoop that – from previous tests – is known to contain ~1.6g of OA when full. Had I used the full recommended dose of Api-Bioxal I would have therefore expected the residue build up to be about 50% worse than shown above. On a vaguely brighter note, the powdered Api-Bioxal pours easily and smoothly, presumably because of the anti-caking agents it contains.

What are the implications of this?

I am very disappointed with the amount of residues left in the vaporiser after using even a single (less than recommended) dose of Api-Bioxal. I’m also disappointed with how difficult these are to clean out of the vaporiser. Might these residues damage the vaporiser, for example by blocking the nozzle, or reduce the effectiveness of vaporisation, for example by not allowing the pan to heat as evenly or quickly? I think both of these are a distinct possibility. An advantage of vaporisation is the ease and speed with which OA can be administered. If the vaporiser needs to be cleaned between every (or even every few) hives it would significantly reduce the attractiveness of this type of Varroa treatment. Remember, if you take your PPE seriously – which you should when vaporising oxalic acid – you’ll be wearing gloves, a respirator/mask and goggles throughout this entire procedure, including cleaning out the residues from the hot vaporiser.

No thanks.


 

Update … 22/2/16

Chris Strudwick kindly sent me before and after photographs of a Bioenoxal vaporiser that had been used once with Api-Bioxal. The ‘before’ image (left) shows the machine after vaporising 1.6g of Api-Bioxal. The ‘after’ shows the “result of 5 minutes with a nylon pan scourer and water after an initial scraping with a hive tool” … so the gunk can be cleaned off, but it takes time.

Many thanks Chris


¹This would have entailed treating hives with a known Varroa-load with either Api-Bioxal or OA. This was not done.

²Some of the DIY vaporisers are either spectacularly dangerous or have been designed without an appreciation of the temperature control required to vaporise oxalic acid.

³If you have a “Varrox”-type vaporiser I’d be interested to hear your experience with using Api-Bioxal.

Time to BEEHAVE

BEEHAVE ...

BEEHAVE …

I’ve been dabbling with BEEHAVE, a computer simulation of a honeybee colony. It’s not beekeeping, but it’s about as close as you can get in the middle of winter. BEEHAVE was developed by Matthias Becher in the University of Exeter and the paper that describes the model is published and Open Access [PDF]. The model includes a wealth of user-modifiable variables such as forage availability, climate, beekeeping activities and pathogens, and outputs information on colony size, speed of development, age structure, honey stores etc. The BEEHAVE simulation is implemented in the open source language NetLogo and is freely available. The parameters that influence colony development – egg laying rate, drone/worker ratios, forage (nectar and pollen) availability, mite replication rate etc. are all based on measured and published data (or logically extrapolated from this if they don’t exist) so that the in silico performance is a fair reflection of what might be expected in the field.

If you can, do … if you can’t, simulate it 🙂

I’m interested in the rational and effective use of miticides to control Varroa-mediated transmission of DWV (and other viruses) in the hive. Using BEEHAVE and a standardised set of conditions allows predictions to be made of how effective a particular Varroa control might be. For example, here’s a simple question we can try and answer:

How important is a midwinter mite treatment if you’ve treated earlier in the year?

Using BEEHAVE set to all the default conditions and ‘priming’ the colony with just 20 mites on the 1st of January it’s possible to see what happens if no treatments are applied over one or more years. It’s then possible to repeat the predictions with the inclusion of a Varroa treatment. For the purpose of this brief introduction to BEEHAVE I’ve used a miticide which is applied and active for a total of 28 days and which kills 95% of phoretic mites. This might broadly reflect Apiguard treatment (2 x 14 days) or vaporised oxalic acid (OA; 3 treatments at 5 day intervals, but documented to kill mites for up to one month). I’ve additionally looked at the application of a single treatment with oxalic acid in midwinter, again killing 95% of phoretic mites, the sort of effect that OA trickling might achieve if there’s no brood present.

No treatment … they’re doomed

No treatment

No treatment

BEEHAVE modelling is based on a series of underlying probabilities (e.g. likelihood of a developing pupa to become mite associated, likelihood of that being a drone or worker pupa) so doesn’t produce the same results every time it is run¹. For example, the graph above shows adult bee numbers (left axis, blue lines) in an untreated colony for three simulations of up to five years each (horizontal axis), together with the associated mite number (right axis, red lines). Mite number build up strongly as new brood is reared each spring, with mite numbers peaking at ~24,000 in the fourth summer. In the third and fourth winters mite number per bee range from 2-4. The default conditions of 20 mites, coupled with a minimum viable colony size of 4000 bees, results in one colony succumbing in the fourth winter and the two remaining dying in the fifth winter (bee numbers drop to zero). Real studies – with untreated hives in the field – have shown similar outcomes (Martin, 1998 [PDF]) though colonies tend to die between winters 2 and 3, presumably because the input mite populations are higher². In all subsequent graphs the data plotted is the average of three simulations.

One treatment … better than nothing

It’s worth remembering at this point that the advice from the National Bee Unit is that mite numbers in the colony should be maintained below 1000 (Managing Varroa [PDF]). To try and achieve this we need to investigate the influence of applying miticides in the simulation – in mid-June (left graph), mid-September (middle) or late December (right). I appreciate mid-June is very early in the season, but it emphasises an important point.

That’s a bit better 🙂 These plots show the averages of adult bee and mite numbers (using the format shown above, blue for bees, red for mites). None of the in silico colonies expired during the simulation though the mite numbers are dangerously high irrespective of the treatment during the mid/late summer months. Note that range of the scale on the right hand (mite numbers) axis differs in each graph. Treatment in mid-June (left) delays the summer exponential rise in mite numbers and, in terms of overall impact on mite numbers (and consequent adult bee losses) is measurably better than only treating in midwinter (right). Of the conditions tested, mid-September (centre) is clearly the best … Varroa levels are reduced at the same time as the colony starts to contract, leaving the remaining mites less opportunity to reproduce. Maximum colony size remains about the same year on year and Varroa numbers never reach more than one third of those seen in either mid-summer or midwinter treatments. However, not everything is rosy … Varroa levels are dangerously high from the third summer on, and levels are increasing each winter. Remember that these simulations were started with just 20 mites in the colony².

Do your colonies have only ~20 mites in them this winter?

Two treatments … a double whammy

Two optimal treatments

Two optimal treatments

It’s only when you combine early autumn and midwinter treatments that mite numbers are really well controlled. Under the highly optimised conditions – both treatments were set to be 95% effective against phoretic mites – Varroa numbers remain below the NBU recommended maximum of 1000 for the duration of the simulation. Clearly the combination of the mid-September slaughter of phoretic mites, coupled with a midwinter mopping up – when there’s little or no brood present – provides really tight control of Varroa levels. However, the importance of this is perhaps even more apparent when you consider the consequences of a sub-optimal mid-September treatment.

The graph on the left shows the consequences of using a miticide that achieves only 85% efficacy … perhaps reflecting Apiguard usage when the ambient temperature is too low for the thymol to be spread throughout the colony. Under these conditions mite numbers rapidly get out of control. Compare that with the graph on the right which includes an additional midwinter treatment where mite numbers are far better controlled … though only to about the same level as is seen with a 95% knockdown of mites in mid-September (centre graph in the ‘one treatment only’ section, above).

And the answer is …

Occupied bait hive

Occupied bait hive …

Although the majority of miticides are broadly similar in their maximum published efficacy, I suspect that they are often used in a way or under conditions that do not routinely achieve these maxima. For example, the 30 year average September temperature in England is just below 13°C, much lower than the temperatures in which Apiguard efficacy reached the reported maximum of 99%, and lower than the Vita-recommended minimum temperature (15°C). Therefore, the answer to the original question (which was How important is a midwinter treatment if you’ve treated earlier in the year?) is … if there’s any chance the late summer/early autumn treatment was sub-optimal then a midwinter treatment is very important to prevent Varroa levels building up in the colony, resulting in the spread of virulent strains of DWV and other viruses. The other broad conclusion is that miticides are much more effective – in terms of impact against the total mite population – when brood levels are low or absent. That’s why brood breaks coupled with miticide treatments e.g. applying vaporised oxalic acid to a recently hived swarm or one that has moved in to a bait hive, are a very powerful combination to reduce the impact of mites, and the viruses they transmit, on the colony.

There are additional considerations which influence the choice and timing of miticide treatments. In a future post I’ll address the timing of the autumn treatment and the critical development of the overwintering bees that get the queen and the colony through to the following Spring.


¹BEEHAVE provides the ability to model colony development based upon measured and measurable parameters within a honeybee colony. Of course, in the real world a host of factors influence our bees – climate, forage availability, bad beekeeping, good beekeeping, integrated pest management, swarming, queen longevity etc. These are all variable within BEEHAVE but have been left unaltered from the defaults for the purpose of this post in which only the timing and efficacy of miticide treatment was altered. All the data for this post were generated using the rather verbosely numbered BEEHAVE_BeeMapp2015 version.

²Mite levels were deliberately started at a very low level to emphasise how quickly they build up if not controlled. Running the simulations with a higher mite input simply shifts all the graphs to the right e.g. increasing input mites to 200 (not an unreasonable number for many midwinter colonies) with no treatment, results in the virtual colony dying in early December of the third year, with mite levels having reached ~5300 in the first summer and ~19000 in the second.

This is the second in a series of related posts about Varroa control. The first was on drifting in honeybees. I’ve created a separate page that lists these and other posts on the how, why and when of Varroa treatment.

Late arrivals

Stacked boxes

Stacked boxes …

I’m moving house in a couple of weeks and so stacked unused ‘bee equipment’ in a pile on the patio for packing. Some of the supers contained drawn comb from previous years, some of the broods were empty and some contained prepared foundationless frames. I thought I’d taken care to align everything reasonably well to ensure they were ‘beetight‘ when I finished up late on Thursday evening. However, I’d misaligned a chest high stack in the middle and unknowingly left a finger-width crack which allowed some scouts to decide it was a desirable site. Sometime mid-morning on Friday – when I was in the office – a good sized swarm arrived. I hadn’t noticed any scouts checking out the location. I originally thought it was robbers cleaning out honey from the supers, but a quick peek under the roof (there was no crownboard on the stack) showed they were busy drawing comb. Going by the numbers of bees present it looked like a prime swarm, but you can’t be sure unless you find the laying queen.

They couldn’t have chosen a much less suitable (for me … it obviously suited them 😉 ) stack to set up home in. The bottom three boxes were empty broods, topped with three supers, two of which were part filled with drawn drone foundation. Inevitably the spacing of the frames in the supers was all over the place. Removing the roof gently showed they were already building brace comb, attached to the roof and/or the frames. The bees were accessing the stack somewhere in the middle, on the face against the wall. What a mess.

Rearranging the hive

Rearranging the hive …

I fired up the smoker and got kitted up. It was relatively easy to split the stack and put a temporary floor below the supers (with the entrance facing the wall) and put a crownboard in place. The colony were agitated but not aggressive. There were far too many bees to try and find the queen. It was a hot day and there was a whirling maelstrom of bees. I was concerned that the queen – if she was mated – would start laying up the drawn drone foundation in the supers. By evening the stack was quietly humming away, with all the bees inside, so I moved them a few feet away to a purpose-built stand (the ubiquitous milk crate) … swarms can be relocated within 24-48 hours of arrival during which time the “3 foot, 3 mile rule” can be safely ignored.

Blackberry

Blackberry …

Early on Saturday morning I put a new floor and brood box filled with frames on the stand, then added a clearer board and put the two supers full of bees on top. The hope was that many of the foragers would move down into the brood box, leaving the queen and attendants above the clearer. I peeked through the perspex crownboard on Sunday morning and the number of bees in the supers was much reduced. A quick inspection located a very dark unmarked laying queen in the supers. One wing was pretty tatty so she might be quite old. To my surprise the bees had re-engineered a big patch of the drawn drone comb in the super frame to make worker-sized cells and that was the area she’d laid up. In addition, they’d also piled in a surprisingly large amount of nectar – presumably from blackberry which is just developing well at the moment. I rearranged the brood box, moving the queen on the laid-up super frame into the bottom box, then shook the remaining bees off the super frames and closed the colony up.

Ready for OA treatment ...

Ready for OA treatment …

Finally, late on Sunday evening I treated the colony by oxalic acid vaporisation. With no sealed brood in the hive it’s a perfect time to reduce the phoretic mite numbers by at least 95%. Since I have no idea about the provenance of the swarm – other than being sure its not from one of my colonies, all of which have marked and/or clipped queens – this gives at least some peace of mind that a range of unpleasant diseases aren’t being introduced to the apiary with the bees, or the mites they’re carrying. I’ll check the Varroa drop over the next few days and monitor the quality of sealed brood before deciding what to do with them. However, I suspect they’ll either be requeened or given away to an association member still wanting bees, or quite possibly both as I unite other colonies in preparation for moving.

The faint sniffing is my hay fever … I’m not testing the OA vapour. The latter is a significant lung irritant and I’m wearing safety goggles and a mask for personal protection. I’ll post something separately on the Sublimox vaporiser later in the season.

Note Unlike an earlier swarm only about ten mites dropped after OA vaporisation within the first 24 hours which is very reassuring. Some claim that only healthy colonies swarm and, although there is some truth in this (i.e. only strong healthy colonies build up sufficiently to swarm), it doesn’t mean the swarm won’t have a high phoretic mite load. Since, by definition, swarms are brood-free it’s an ideal time to treat them.

Somerset BKA lecture day

DWV symptoms

DWV symptoms

I’m delighted to be sharing the programme with Michael Palmer and Celia Davies at the Somerset BKA lecture day in Cheddar this Saturday (21st February ’15). I’ll be adding a small bit of science to the day and no doubt benefiting significantly from their wealth of beekeeping expertise. It should be a very enjoyable event.

Update – it was a very enjoyable event.  Aside from a few audio problems with a misbehaving microphone a packed hall enjoyed two talks by Celia Davies on Summer and Winter Bees and A World of Scents and a  further two from Michael Palmer on the Sustainable Apiary and Queen rearing.

If you’ve not heard Michael talk about the importance of overwintering nucs for sustainable beekeeping then you should either try and catch him on his current UK tour or watch him deliver the talk at the 2013 National Honey Show on YouTube. I think I’ve heard this talk three times and have learnt something new every time. The methods Michael uses directly address the problems (lack of early-season queens, overwintering losses etc.) I’ve previously outlined in a post on the impact of imported bees and queens on the quality of UK beekeeping in Supply and Demand.

All the talks – including the science of Varroa and deformed wing virus I presented – generated lots of questions and discussions. With thanks to Sharon Blake for the invitation and organisation of the day.

CABK Stratford Conference

Falcon Hotel

Falcon Hotel

I’m delighted to be speaking at the  CABK Stratford Conference (the Central Association of Beekeepers; Bringing Science to the Beekeeper) on Saturday and Sunday 22/23 November 2014. I’ll be discussing the identification of a virulent strain of deformed wing virus, characteristics of its transmission and potential ways it might be controlled in the future. The CABK website doesn’t yet appear to list other speakers, but the provisional programme I’ve seen lists Alison Haughton from Rothamsted, Ben Jones from FERA, Jochen Plugfelder from Bern and Bob Smith from Kent.

There should be ample time for discussions so please introduce yourself if you want to chat.

Update

Despite the best efforts of the Falcon Hotel (who appeared to have reserved far too few rooms for the registered delegates) the meeting was very enjoyable. The talks I heard were excellent, with ample time for discussion. In particular I enjoyed listening to Bob Smith who showed us the differences between DN5 frames from two of the major manufacturers … one made to British Standard sizes with the wrong beespace (Thorne’s), and the other with the correct beespace between the top bars, the rebated side bars and the wide bottom bars (National Bee Supplies if I remember correctly). Bob’s talk was the only beekeeping talk I’ve heard with psychedelic imagery and a guitar riff. Bob also demonstrated his enviable woodworking skills with an elegant little (mating nuc sized) observation hive. Jochen Plugfelder gave two fascinating presentations on improved formulations of formic acid for Varroa treatment and the chemistry of queen fighting, the latter supported by excellent video. Ben Jones discussed his studies on dietary influences on foragers and – in a commendably dedicated way – rushed off early to complete a time course experiment. Finally (although it was actually the first talk of the meeting in place of Alison Haughton) Robert Pickard presented a wide ranging overview of social and solitary bees and their mimics. The talk was actually so wide ranging that it was difficult to categorise it and was illustrated with a range of interesting slides.