Tag Archives: ‘Allo ‘Allo!

Oxalic acid preparation

This is the second of three articles on midwinter treatment of colonies with oxalic acid to minimise Varroa levels. In a recent post I explained why a midwinter treatment was necessary, even if you’d treated three months earlier. Essentially this is because:

  • there will still be some residual Varroa, particularly if you treated in late summer rather than early autumn (and this post explains why early treatment is preferable)
  • midwinter is the time when brood levels are at a minimum, so most mites will be phoretic and readily accessible to the miticide treatment

Midwinter is the time to use oxalic acid-containing treatments. It can be delivered in a variety of ways; by sublimation (vaporisation), spraying or trickling (dribbling).

Trickling or dribbling

This post is about the preparation and storage of oxalic acid-containing solutions for trickling. Sublimation is covered elsewhere and spraying is not approved or widely used in the UK.

The process for trickling is very straightforward. You simply trickle a specific strength oxalic acid solution in thin syrup over the bees in the hive. The oxalic acid kills the mites. How isn’t entirely clear – it’s thought to corrode the mouthparts and soft tissue. It’s more than 90% effective in killing phoretic mites when used like this.

Beekeepers have used oxalic acid for years as a ‘hive cleaner’, as recommended by the BBKA and a range of other official and semi-official organisations. All that changed when Api-Bioxal was licensed for use by the Veterinary Medicines Directorate (VMD).

Oxalic acid and Api-Bioxal, the same but different

Spot the difference ...

Spot the difference …

Api-Bioxal is the VMD-approved oxalic acid-containing miticide. It is widely available, relatively inexpensive (when compared to other VMD-approved miticides) and very easy to use.

It’s very expensive when compared to oxalic acid purchased in bulk.

Both work equally well as both contain exactly the same active ingredient. Oxalic acid.

Api-Bioxal has other stuff in it (meaning the oxalic acid content is a fraction below 90% by weight) which actually makes it much less suitable for sublimation.

How much and how strong?

To trickle or dribble oxalic acid-containing solutions you’ll need to prepare it at home, store it appropriately and administer it correctly.

I’ll deal with how it is administered next time. This is all about preparation.

The how much is easy. You’ll need 5ml of oxalic acid-containing solution per seam of bees. In midwinter the colony will be reasonably well clustered and its likely there will be a maximum of only 8 or 9 seams of bees, even in a very strong colony.

Hold on … what’s a seam of bees?

Two seams of bees

Two seams of bees …

Looking down on the colony from above, a seam of bees is the row visible between the top bars of the frames.

Remember to prepare ~10% more than you think you need. You’ll inevitably spill some when using the Trickle 2 bottle to administer it to the colony. It’s not that expensive, so don’t risk running out.

And the how strong? The recommended concentration to use oxalic acid at in the UK has – for many years – been 3.2% w/v (weight per volume) in 1:1 syrup. This is less concentrated than is recommended in continental Europe (see comments below on Api-Bioxal).

My advice – as it’s the only concentration I’ve used – is to stick to 3.2%.

Listen very carefully, I shall say zis only once

A bit of basic chemistry coming up. Skip to the warning in red below and then the recipes if you want, but this explains some important things about working out how much to use.

The molecular formula of oxalic acid is C2H2O4. The molecular weight of oxalic acid is 90.03 g/mol. However, the oxalic acid you purchase – including Api-Bioxal – is the dihydrated form of oxalic acid.

Di as in two, hydrated as in water.

The molecular formula of oxalic acid dihydrate is C2H2O4.2H2O and oxalic acid dihydrate has a molecular weight of 126.07 g/mol.

Therefore the weight of oxalic acid in 1 g of oxalic acid dihydrate is 90.03/126.07 = 0.714 g.


Oxalic acid is toxic

  • The lethal dose for humans is reported to be between 15 and 30 g. It causes kidney failure due to precipitation of solid calcium oxalate.
  • Clean up spills of powder or solution immediately.
  • Take care not to inhale the powder.
  • Store in a clearly labelled container out of reach of children.
  • Wear gloves.
  • Do not use containers or utensils you use for food preparation. A carefully rinsed plastic milk bottle, very clearly labelled, is a good way to store the solution prior to use.

Recipes : oxalic acid

The standard recipe is 100 g water plus 100 g white granulated sugar. Mix well and then add 7.5 g of oxalic acid. The final volume will be 167ml i.e. sufficient to treat over 30 seams of bees, or between 3 and 4 strong colonies (including the 10% ‘just in case’).

This final concentration is 3.2% w/v oxalic acid … (7.5 * 0.714)/167 * 100 = 3.2. Check my maths.

0.01 g to 500 g

0.01 g to 500 g

If you have more colonies to treat, or have trouble weighing 7.5g, scale everything up ten-fold. Or buy a small, accurate set of digital scales – like these for £9 which work very well. 1 kg of sugar plus 1 kg (1 litre) of water requires 75 g of oxalic acid and makes 1.67 litres … enough to treat all the colonies in the association apiary.

Which is not such a bad idea. Make it up carefully once and share it with your fellow beekeepers. Storage details are provided below.

Recipes : Api-Bioxal

Warning – the recipe on the side of a packet of Api-Bioxal makes up a much stronger solution (4.4% w/v) of oxalic acid than has historically been used in the UK. Stronger isn’t necessarily better. The recipe provided is 35 g Api-Bioxal to 500 ml of 1:1 syrup. By my calculations this recipe makes sufficient solution at a concentration of 4.4% w/v to treat 11 hives. 

To make a 3.2% Api-Bioxal-based oxalic acid-containing solution using the 35 g pack of Api-Bioxal you need to mix the entire contents of the pack with 691 ml of 1:1 syrup.

Here’s the maths:

  • 35 g of Api-Bioxal contains only 22.14 g of oxalic acid. 88.6% of the 35 g is oxalic acid dihydrate (the remainder is cutting agents like glucose and powdered silica) and so the oxalic acid content is ((35 * 0.886) * 0.714) = 22.14 g.
  • To calculate the volume of syrup you need to divide it by the final percentage required i.e. (22.14 / (3.2/100)) = 691 ml. I don’t know the exact amount of sugar and water needed to make this amount … it’ll be about 430 g of each (I think).

A 35 g packet of Api-Bioxal is therefore sufficient to treat about 15 colonies (assuming 5 ml per seam, 8 seams per hive and 10% ‘just in case’) at the recommended concentration of 3.2% w/v.

Api-Bioxal is sold in three pack sizes (35 g, 175 g and 350 g). If you are wealthy enough to be able to purchase the larger pack sizes you’ve probably got your own beekeeper (or mathematician). Relax on your yacht while they do the calculations for you 😉

On the other hand … if you have a smaller number of colonies either make a full 35 g packet up and share it, or use accurate scales and the following table:

Api-Bioxal recipes for 3.2% OA trickling

Api-Bioxal recipes for 3.2% OA trickling


Storage of oxalic acid syrup at ambient temperatures rapidly results in the acid-mediated breakdown of sugars (particularly fructose) to generate hydroxymethylfurfural (HMF). As this happens the colour of the oxalic acid-containing solution darkens significantly.

This breakdown happens whether you use oxalic acid or Api-Bioxal.

Stored OA solution and colour change

Stored OA solution and colour change …

HMF is toxic to honey bees at high concentrations. Studies from ~40 years ago showed that HMF concentrations below 30 mg/l were safe, but above 150 mg/l were toxic1. HMF buildup is one way overheated honey is detected.

At 15°C HMF levels in OA solution can reach 150 mg/l in a little over a week. At room temperature this happens much faster, with HMF levels exceeding 150 mg/l in only 2-3 days. In the dark HMF levels build up slightly less quickly … but only slightly 2,3.

Only make up OA solutions when you need them.

If you must store your oxalic acid-containing syrup for any length of time it should be in the fridge (4°C). Under these conditions HMF levels remain well below toxic levels for at least one year. However, don’t store it for this long … use it and discard the excess. Don’t use discoloured oxalic acid solutions as they’ve been stored incorrectly and may well harm your bees.

Please re-read the comments above about the toxicity of oxalic acid. If you are going to store it in the fridge it must be very clearly labelled and there must be no chance that children can reach or open the container.


Api-Bioxal is the least expensive VMD-approved miticide and powdered oxalic acid is much, much cheaper. Both contain the same active ingredient, oxalic acid, which is highly effective against phoretic mites.

In midwinter, with very low levels (or no) of brood, a single oxalic acid-containing treatment minimises mite levels for the coming season.

Oxalic acid-containing solutions are easy to prepare. I recommend you make sufficient for your own colonies and those of your beekeeping friends and association members. My previous BKA used to distribute litres of the stuff for use in midwinter. Use this solution in midwinter and then discard any that is unused.

Oxalic acid-containing solutions are inexpensive and easy to administer by trickling. As I shall demonstrate next time.

Please re-read the safety instructions highlighted in red above.

Michelle Dubois

Michelle Dubois

† Listen very carefully, I shall say zis only once was a catchphrase used by “Michelle of the Resistance” in the 1980’s comedy ‘Allo ‘Allo! Michelle (Dubois) was rarely seen without a trench coat and beret, had a corny French accent and was played by Kirsten Cooke.

‘Allo ‘Allo! ran for 85 episodes in the decade from 1982 on BBC one. It was about a café in Nazi-occupied France and the French Resistance, just about. It mixed bawdy humour with gross stereotypes (posh British twits, sex-obsessed French) and was a parody of ITV’s series Secret Army (’77-’79).

Early episodes had obvious and rather dull titles. In the later series the individual episodes had some quite good puns like Awful Wedded Wife.

Michelle – Listen very carefully, I shall say zis only once

René – Well, in that case, could you please speak slowly?

You had to be there … 😉

‡ Oh alright then, since you insist. The 175 g pack of Api-Bioxal (~£39) needs to be made up in 3.459 litres of 1:1 syrup and the 350 g pack (~£65) 6.919 litres of 1:1 syrup. Determining how much water and sugar to mix to make these amount is, as they say, an exercise for the reader. Assuming a 3.2% solution and 8 seams of bees per colony Api-Bioxal costs between 63p and 41p per hive (see note below), depending upon the pack size you purchase. I know that beekeepers moan on and on about the outrageous cost of Api-Bioxal (as do I), but is 63p per colony really an unreasonable amount to spend on VMD-approved medicines to keep your colony as clear of Varroa as possible? I don’t think so.

Note – the costs in the paragraph were calculated using the lowest prices I could currently find for Api-Bioxal. C Wynne Jones has the 35g packets for £9.50 and Maisemores have the 350g packets for £64.79. Prices correct on 9/10/17.

1 Jachimowich T., El Sherbiny G., Zur Problematik der verwendung von Invertzucker für die Bienenfüttering, Apidologie 6 (1975) 121-143.

2 Bogdanov S., Kilchenman V., Chamere J.D.. Imdorf A. (2001) available online.

3 Prandin, L., Dainese, N. , Girardi, B., Damolin, O., Piro, R., Mutinelli, F. A scientific note on long- term stability of a home-made oxalic acid water sugar solution for controlling varroosis Apidologie, 32:) 451-452