Tag Archives: natural beekeeping isn’t

Small cell foundation

In a recent monthly newsletter Thorne’s announced they were now supplying small cell foundation. This foundation has a cell diameter of 4.9mm, rather than the standard 5.2-5.4mm. Under the ambiguous heading 4.9 mm foundation for varroa control” they have the following text:

Wired foundation

Wired foundation

“It is claimed varroa mites struggle to reproduce in the slightly smaller cell size. 4.9 mm being close to what bees produce in comb width in nature. Many beekeepers in the USA who have experimented with small cell have reported encouraging results. Moving over to small cell however can be difficult and must be done at the correct time of year. It cannot be done either by simply putting 10 frames of small cell foundation in the hive. The bees must first be subject to regression over a period of several months.”

Do mites struggle to reproduce?

No. There’s compelling scientific evidence that Varroa levels in hives on small cell foundation may actually have higher mite levels than those on standard foundation. These are from properly conducted and controlled studies involving dozens of hives.

It certainly is claimed that mites struggle to reproduce in small cell foundation. The evidence actually directly contradicts these claims. Undoubtedly beekeepers in the USA have reported encouraging results, but scientists doing side-by-side comparisons clearly demonstrate that mite levels are at best not changed or at worst appreciably higher on small cell foundation.

Actually, it’s not the mites but our bees that struggle to reproduce in small cells. This explains the phrase “subject to regression over a period” above. You have to select smaller bees that can reproduce well in small cell foundation. Once this is done, the bee size is measurably smaller and the density of brood cells in the hive is greater.

Is this is a one-off study – where is the independent verification?

No. They were repeated at least three times by labs at the University of Georgia. Similar studies were conducted by Florida Department of Agriculture and Consumer services. In addition, the Ruakura Research Centre in Hamilton, New Zealand, conducted their own study – using a different experimental format – but achieving the same conclusions. Small cell foundation increased mite levels when compared with conventional or standard diameter foundation. There are now several additional independent studies which essentially reach the same conclusion – small cell foundation does not restrict Varroa replication and may actually increase it.

Has this new research been published?



After all, perhaps Thorne’s aren’t completely up-to-date about these studies? If the work is really new then perhaps they can be excused for trying to flog something for which there’s no compelling evidence of benefit.

Well, it was published … in some cases seven to nine years ago:

  1. Taylor, M.A., Goodwin, R.M., McBrydie, H.M., Cox, H.M. (2008) The effect of honeybee worker brood cell size on Varroa destructor infestation and reproduction. Journal of Apiculture Research 47, 239–242 … summary, a higher proportion of cells from small foundation were mite infested.
  2. Ellis, A.M., Hayes, G.W., Ellis, J.D. (2009) The efficacy of small cell foundation as a Varroa mite (Varroa destructor) control. Experimental and Applied Acarology 47, 311–316 … summary, no difference in mite levels between small cell and conventional foundation.
  3. Berry, J.A., Owens, W.B., Delaplane, K.S. (2010) Small-cell comb foundation does not impede Varroa mite population growth in honey bee colonies. Apidologie 41, 40–44 … summary, small cell colonies had ~40% higher mite infestation levels when compared with conventional foundation.
  4. Seeley, T.D., Griffin, S.R. (2011) Small-cell comb does not control Varroa mites in colonies of honeybees of European origin. Apidologie 42, 526-532 … summary, no difference in mite infestation levels between small cell and conventional foundation.

If you want an accessible and readable account of small cell foundation studies Jennifer Berry has written one for Bee Culture which includes experimental details of the work in references 1-3 above.

In denial

A recent thread on Beesource discussed the reported benefits of small cell foundation and the scientific evidence that contradicts these claims. It’s notable that supporters of small cell foundation generally criticise the ‘agenda’ they claim scientists have, rather than providing scientific evidence that supports the ‘benefits’. I’ve not been able to find a single peer-reviewed and properly controlled study that supports the beneficial claims for small cell foundation.

Hives on small cell foundation may have manageable levels of Varroa. If they do it’s in spite of the use of small cell foundation, not because of it. I am very willing to accept that there are some very competent beekeepers using splits, rational miticide treatment or other strategies and small cell foundation, who have low or manageable Varroa levels. However, it’s their beekeeping skill and experience not the choice of foundation size that is important here.

Indeed, you could argue that the detrimental enhancement to mite reproduction of small cell foundation, means that they must have truly exceptional beekeeping talents.

Or an agenda perhaps 😉

Ambiguous and misleading titles

In the opening paragraph I stated that the title 4.9 mm foundation for varroa control” was ambiguous. The scientific evidence presented above is that small cell foundation does control Varroa. Assuming you use the word ‘control’ when defined as the power to influence or direct the course of events. Small cell foundation does exert control … but almost certainly in the opposite direction to the way implied in the title.

What turns an ambiguous into a misleading title is this implication that small cell foundation reduces Varroa levels. The text that accompanies makes this implication without providing any sort of balanced view based upon the published evidence to the contrary.

Beekeepers, particularly beginners, looking for effective ways to reduce their mite levels are not being provided with the facts and are likely to be misled.

But wait … were all these scientific studies flawed?

Thorne’s partly justify the sale of small cell foundation in their newsletter by citing a UK research project that involves its use:

“The University of Reading has just started an exciting new research project examining the highly problematic issue of varroa mites and whether the use of small cell foundation (4.9 mm) can help. This is being carried out with volunteer beekeepers in the local area as well as in an apiary at the University. The study will evaluate the use of small cell foundation alongside regular-sized (5.4mm) foundation and compare the varroa loads during next spring and summer.

This is an interesting topic to research as beekeepers around the world have had success with the use of small cell foundation whereas many others have not. Some previous studies have also found that varroa counts increase in the short term when small cell foundation is first used. The new study will evaluate what happens once the bees have fully adjusted to small cell foundation and if there is a significant impact on varroa loads.”

The implication here is that the previous studies (above) are flawed because they failed to use bees that were properly adapted to small cell foundation. Thorne’s do clearly state that the bees have to be properly adapted – subjected to regression – for several months before benefits are seen (or claimed to be seen). To their credit also, they acknowledge that some studies show increases in mite levels. This text is from the newsletter and unfortunately does not appear on the webpage of their catalogue that describes the foundation.

Call me sceptical …

If it looks like a duck ...

If it looks like a duck …

As you can tell from the tone of this post, I remain sceptical.

If it looks like a duck, if it swims like a duck and if it quacks like a duck … it is a duck. As a scientist I’m influenced by controlled studies, not hearsay or beliefs.

The Berry study (ref 3 above) did use bees reared on small cell foundation for their comparative studies, the other studies did not as far as I can tell. However, remember the original hypothesis about why small cell foundation is beneficial. The mites do not develop properly within the cell as they are ‘crowded’ by the abdomen of the developing honey bee pupa i.e. there’s too little space for the mite.

What does regression lead to? Smaller bees. In the Berry et al., study the weights of adult bees reared on small cell and conventional foundation was 129 and 141 mg respectively. This seems to be contradictory … if properly regressed bees on small cell foundation are significantly smaller than those on conventional foundation how is the space for the mite development restricted? I acknowledge that the cell size is proportionately smaller than the reduction in adult bee weight. Conversely, if small cell foundation is supposed to restrict mite development, why are levels apparently higher when ‘normal’ sized bees are first forced to use smaller cells? Surely there should be a greater reduction in mite reproduction before the bees have regressed?

I hope the study being conducted by the University of Reading is thorough and properly controlled. These are difficult studies to conduct, particularly at the scale needed to be statistically convincing and when not under the direct control of a single beekeeper in a single apiary. I wish them every success with the experiments and look forward to reading about it once it is peer-reviewed and published.

Until then I suggest you save your £11.60 for ten sheets of small cell wired brood foundation … you’d be far better off preparing foundationless frames and controlling Varroa by rational and judicious use of hive manipulations and approved miticides.

Additional reading (far from exhaustive):

The late and still unbeatable Dave Cushman has an article by Philip Denwood reproduced from the 2003 BIBBA magazine on cell size. Recommended for a historical perspective.

A 2013 article from the New Hampsha’ Bees blog Small cell doesn’t work (but please don’t tell my bees describing typical evidence that small cell foundation does work … anecdotal and not controlled, but nevertheless enthusiastic and – unusually – acknowledging the evidence against.

Michael Bush on small cell bees and foundation.

Dee Lusby – one of the originators of the ‘small cell’ movement – in an early article from ABJ reproduced on the Beesource forums. Be warned … there’s some misleading nonsense in this article. For example “it is a known fact that both honey bees and mites have been on this Earth many millions of years together and survived quite nicely”. I don’t disagree that both mites and bees have been around for millennia. However, they have only been together for a century or so. I think I’ll have to write something about natural beekeeping in the future …

It’s notable that top Google ‘hits’ for small cell foundation provide no scientific support for the claims that are made … caveat emptor.




Divide and conquer

Tom Seeley (of Honeybee Democracy fame) published an interesting paper in the journal PLoS One recently on “How honey bee colonies survive in the wild: testing the importance of small nests and swarming” – the paper is available as a PDF following this link (Loftus et al., 2016 PLoS One 11:e0150362).

Size matters

Using his normal elegant methodology Seeley formally tested the observed reduction in colony size and increased swarminess (is that a word?) of – feral or otherwise – colonies ‘selected’ to survive without Varroa treatment by simply abandoning them. The hypothesis – based on previous studies and an understanding of the biology of Varroa – was that colonies ‘forced’ to swarm by being confined in small hives would inevitably:

  • lose significant amount of Varroa through the act of swarming
  • experience a brood break so delaying Varroa replication while requeening
  • consequently survive better than large colonies in which pathogen levels inexorably increased to a level that would destroy the colony

Testing the hypothesis

He tested this by establishing adjacent apiaries (so they have the same microclimate) with either small (~40 litres … about the same as a National brood box) or large (~170 litre) volume hives and installing nucs in each which contained similar levels of brood, bees and Varroa. No Varroa control was performed. Those in the small hives were not managed to prevent swarming whereas those in the large hives were – with the caveat that the colony was kept together (i.e. queen cells were destroyed, brood frames were spread and ample supers were added). The study lasted two years, with regular monitoring of the colony strength, Varroa infestation level etc.

High levels of DWV

High levels of DWV …

To cut a long (but nevertheless interesting and worth reading) story short … the results support the original hypothesis. During the first year of the study the colonies developed in a broadly similar manner from transfer of the nuc to the large or small hive in June until the season’s end. However, by the following May the large hived colonies were almost twice as populous as those in the small boxes. This continued until August, with the average adult bee population in the small and large hives being ~10,000 and ~30,000 respectively. During this second season 10/12 small hives swarmed, whereas only 2/12 of the large hived colonies swarmed. In the latter mite levels dramatically increased to >6/100 adult bees (i.e. riddled with the little b’stards – my opinion, Seeley is too polite to comment). For comparison, the picture above has ~100 bees in it, with one visible Varroa, but has lots of overt deformed wing virus disease. In contrast, the small hived colonies – with the exception on one sampling point discussed later – had three to five times fewer mites than seen in the large hived colonies. By the second winter 10/12 large hived colonies had perished whereas only 4/12 small hived colonies had succumbed, and one of these was to a drone laying queen, not disease. Perhaps most tellingly, 7/12 large hived colonies had signs of overt deformed wing virus (DWV) disease – pathetic, tottering newly emerged workers with stunted abdomens and shrivelled wings – whereas none of those in small hives showed obvious disease.

Great … Varroa-tolerant colonies … where can I get some?

A small swarm

A small swarm

So, what does this mean in terms of practical beekeeping? Firstly, it suggests that it is possible to keep honey bee colonies without treatment or intervention. But – and it’s a biggy – the colonies will be too small to collect meaningful amounts of honey and will spend their time and energy swarming instead. 10,000 adult bees does not a colony make, as Aristotle didn’t say. Or at least not a colony that’s of any practical use for the honey-gathering goal of beekeeping. Ted Hooper (“Bees and honey“), and many others, have made the point that one big colony will gather more nectar than two smaller colonies. Secondly, these small colonies will chuck out loads of Varroa-riddled swarms. Seeley has previously demonstrated that swarming colonies lose ~35% of their Varroa load with the bees that leave the colony. Although this clearly benefits the original colony it potentially distributes Varroa-laden bees (and the smorgasbord of viral pathogens that are the real problem) to whichever local beekeeper finally hives them. This explains the need for prompt Varroa treatment of any swarms you might acquire.

On a more positive note this study clearly shows the benefit of a brood break in terms of restricting the replication and amplification of Varroa. Presumably this is primarily due to the 3+ week window with no sealed brood for Varroa to infest, though it may also mean that broodless colonies might get rid of Varroa at a faster rate with no brood present to distract them. It would be interesting to have compared mite levels immediately after swarming and in the subsequent weeks until the new queen starts laying. Randy Oliver has also discussed the benefits of a brood break during empirical development (and computer modelling) of his beekeeping methods for Varroa control. In his forthright manner he explains “Take home message: early splitting knocks the snot out of mite levels“.

Why discuss this if they’re no use for beekeeping … ?

There was one exception to the generally low mite levels in the small hived colonies and that was late summer in the second year when they all exhibited a large spike in Varroa numbers. This was attributed to robbing-out a collapsing, and soon to die-off completely, large hived colony in the adjacent apiary. The two study apiaries were in the same field. This emphasises the points made in earlier posts about the impact of drifting and robbing and the, at least theoretical benefits of, coordinated Varroa control. Of course, ~2 mites per 100 adult bees in the small hived colonies is not really a low number at all. Assuming a colony size of 10,000 adults with 80% of the mites in capped cells the total Varroa load would be ~1000 in the colony, the threshold level above which the NBU consider treatment is required to avoid loss of the colony.

Divide and conquer

The Varroa loss achieved by swarming, coupled with the break in brood rearing, help the colony conquer – or more correctly tolerate – Varroa levels that otherwise rapidly increase and destroy a colony. However, this is neither a practical or acceptable solution to the Varroa problem. ‘Beekeepers’ (an oxymoron surely?) that allow their colonies to swarm indiscriminately both reduce their chance of getting a good honey crop and impose their – potentially Varroa-ridden – swarms on the neighbourhood. This is irresponsible. In contrast, beekeepers who carefully monitor their colonies and use an effective combination of integrated pest management – for example, including an enforced brood break during the ‘June gap’, or a vertical split, perhaps – benefit from large, healthy, honey-laden§ colonies which overwinter better.

§ at least in the good years 😉