Category Archives: Sublimators

Repeated oxalic acid vaporisation

Synopsis : Does repeated oxalic acid vaporisation of colonies rearing brood work sufficiently well? Is it as useful a strategy as many beekeepers claim?

Introduction

Oxalic acid is a simple chemical. A dicarboxylic acid that forms a white crystalline solid which dissolves readily in water to form a colourless solution. It was originally extracted from wood-sorrels, plants of the genus Oxalis, hence the name. In addition to the wood-sorrels it is present in a wide range of other plants including rhubarb leaves (0.5% oxalic acid 1 ), the berries and sap of Virginia creeper and some fruits, such as starfruit. Additionally, fungi excrete oxalic acid to increase the availability of soil nutrients.

Oxalic acid is inexpensive to produce by a variety of processes and was possibly the first synthesised natural product. About 120,000 tonnes are produced annually and it is mainly used for bleaching wood (and often sold as ‘wood bleach’) and cleaning products – including teeth. It chelates iron and so is used for rust removal and is used as a dye fixative (or mordant 2 ).

Spot the difference ...

Oxalic acid and API-Bioxal … the same but different

It is also, when used properly, devastatingly effective against the ectoparasitic mite Varroa destructor.

And, even more importantly, when used properly it is extremely well-tolerated by honey bees.

Great!

Not so fast …

Unfortunately for beekeepers, some of the commercially available i.e. licensed and approved, oxalic acid-containing treatments either contain unnecessary additives and/or have limitations in their approved modes of administration that reduces their efficiency and use in real world beekeeping situations.

Oxalic acid-containing miticides and their use

A quick search of the UK’s 3 Veterinary Medicines Directorate snappily titled Product Information Database for ‘target species = bees’ and ‘active ingredient = oxalic acid’ yields three products :

  • Varromed (BeeVital GmbH) which is a solution containing formic acid and oxalic acid
  • Oxybee (DANY Bienenwohl GmbH) which is an oxalic acid solution PLUS a separate powder containing essential oils and sugar. As far as I can tell, Oxybee looks to be the same product as Dany’s BienenWohl powder and solution, which – although listed and licensed – I cannot find for sale 4 in the UK
  • API-Bioxal (Chemicals Laif S.P.A) which is purchased as a powder composed of 88% oxalic acid dihydrate together with silica and glucose

I’m going to largely ignore Varromed and Oxybee for the rest of this post. I’m sure they’re perfectly good products but I’ve not used either of them so cannot comment from personal experience.

Keeping your powder dry

More relevant to this post, Oxybee and Varromed are both liquids, and this post is about vaporising (aka sublimating) oxalic acid.

And vaporisation involves using the powdered form of oxalic acid.

Which neatly brings me to the methods of application of oxalic acid-containing treatments to kill mites.

I’m sure there are some weird and wonderful ones, but I’ll be limiting any comments to just three which – from my reading of the instructions – are the only ones approved (and then not for all of the products listed above) : 5

  • Spraying a solution onto the surface of the bee-covered frames
  • Dribbling or trickling a solution onto each seam of bees between the frames
  • Vaporisation or sublimation of powdered oxalic acid by heating it in a metal pan to convert it to a gas. This permeates the hive, settling on all the surfaces – woodwork, comb, bees – and remains active against mites for a period after administration

Broodless is best

Oxalic acid, however it is administered, does not penetrate brood cappings. Therefore all of the approved products are recommended for use when the colony is broodless.

Typically – though not exclusively – this happens in the winter, but the beekeeper can engineer it at other times of the season.

If the colony is broodless you can expect any oxalic acid-containing miticide to reduce the mite population by 90% or more. There are numerous studies that support this level of efficacy and it’s what you should be aiming for to give the colony the best start to the season.

I discussed at length how to determine whether a winter colony is broodless a fortnight ago in Broodless?

This post is a more extensive response to several comments (made to that Broodless? article) that recommended repeated vaporisation of oxalic acid at, either 4, 5 or 7 day intervals.

The idea is that this kills the phoretic mites present when the colony is first treated and the mites subsequently released as brood emerges.

How many repeats?

I’ve seen anything from two to seven recommended online.

I’ll discuss this further below, but I’d note that the very fact that there’s such variation in the recommended repeat treatments – perhaps anything from two, fours days apart to seven at weekly intervals (i.e. spanning anything from 8 days to 49 days) – suggests to me that we don’t know the optimal treatment schedule.

Which is a little weird as, a) Varroa is a globally-distributed problem for beekeepers and is more or less invariant (as is the brood cycle of the host honey bee), and b) repeated treatment regimes have been used for over 20 years.

Which brings me back to a crude comparison of vaporisation vs dribbling, or …

Sublimation vs. trickling

A hive can be sublimated with oxalic acid without opening the hive. The vaporiser alone is introduced through the hive entrance or – in the case of certain models – the vapour is squirted through a hole in the floor, brood box or eke. In contrast, trickling oxalic acid requires the removal of the crownboard.

In the video above I’m using a Sublimox vaporiser. The hive entrance is sealed with foam and the open mesh floor is covered with a tightly fitting slide-in tray. As you can see, very little vapour escapes.

Although oxalic acid is well tolerated by bees, and it has no effect upon sealed brood, a solution of oxalic acid is detrimental to open brood. Therefore, trickled oxalic acid weakens the colony – because the acidity kills some or all of the open brood – and repeated trickling of oxalic acid is likely to compound this (see Al Toufailia et al., 2015). In contrast, repeated oxalic acid vaporisations appear not to be detrimental to the colony (caveat … I’m not aware of any long-term studies of this, or for the impact on the queen).

API-Bioxal approved methods of administration

The instructions for API-Bioxal clearly state that only a single treatment by vaporisation is approved per year. The exact wording is:

Maximal dose 2.3g per hive as a single administration. One treatment per year.

In contrast, when used as a solution for trickling the instructions state:

Up to two treatments per year (winter and/or spring-summer season in brood-free colonies).

This seems nonsensical to me considering what we now know about oxalic acid – remember, API-Bioxal was licensed in the same year (2015) that Al Toufailia et al., demonstrated it was detrimental to open brood, and I’m reasonably sure this had been shown previously (but can’t currently find the reference).

But, it gets worse …

API-Bioxal contains oxalic acid with powdered silica and glucose. I presume the silica is to keep it free-running. I’m not aware that powdered silica kills mites and I’m damned certain that glucose has no miticidal activity 😉 .

Neither of these two additives – which I’ve previously called cutting agents – are there to increase the activity of the oxalic acid … and the presence of the glucose is a real problem when vaporising.

Single use ...

Caramel coated Sublimox vaporiser pan

When glucose is heated to 160°-230°C it caramelises (actually, this happens at 150°C 6 ), coating the inside of the vaporising pan. This needs to be cleaned out afterwards 7. The instructions state:

Cool down and clean the vaporizer after use to remove possible residue (max 6%, around 0.140 g).

However, I don’t want to focus on what I consider to be a very effective but decidedly sub-optimal product … instead I want to discuss whether repeat treatment with oxalic acid actually works when there is brood present.

Why is repeat treatment recommended?

Remember, it’s not recommended or approved by the manufacturers of API-Bioxal or the Veterinary Medicines Directorate. I really should have titled this section ’Why is repeat treatment recommended by those who advocate it?’

But that wouldn’t fit on a single line 😉 .

When you sublimate oxalic acid, the gas cools and the oxalic acid crystals settle out on every surface within the hive – the walls, the frames, the comb, the bees etc.. For this reason, I prefer to vaporise oxalic acid when the colony is not tightly clustered. I want everything to be coated with oxalic acid, and I particularly want every bee to be coated because that’s where most of the mites are.

Unless they’re in capped cells 🙁 .

And if they’re in capped cells, the only way the Varroa (released when the brood emerges) will come into contact with oxalic acid is if it remains present and active within the hive. Unfortunately, it’s unclear to me exactly how long the oxalic acid does remain active, or what accounts for a drop in its activity.

But it does drop.

If you treat a colony with brood present and count the mites that appear on the Varroa tray every day it looks something like this:

Mite drop per day before and after treatment

’Something like’ because it depends upon the phoretic mite levels and the amount and rate of brood uncapping. For example, you often see higher mite drops from 24-48 hours than 0-24 hours after treatment.

I know not why.

The drop in the first 48 hours – presumably almost all phoretic mites – can be very much higher than the drop from day three onwards 8.

The duration of activity after vaporisation

Some studies claim oxalic acid remains active for 2-3 weeks after administration. I’m a little sceptical that it’s effective for that long and my own rather crude observations of post-treatment mite drop (of brooding colonies) suggests it returns to background levels within 5-7 days.

I could rabbit on about this for paragraphs as I’ve given it a reasonable amount of thought, but fortunately the late Pete Little did the experiment and showed that:

The recommended dose for colonies with brood is three or four doses seven days apart, however I found out that this is not effective enough, and treated 7, 6, 5 4, 3, 2 days apart to find out the most effective which is 5.

It therefore makes sense that three treatments at five day intervals should be sufficient. This period comfortably covers a complete capped brood cycle (assuming there is no drone brood in the colony) which is 12 days long.

Repeated oxalic acid vaporisation treatment regime.

If there is drone brood present you would theoretically need four treatments at 5 day intervals to be sure of covering the 15 day capped brood cycle of drones.

But it turns out there are some additional complications to consider.

Dosage

In the UK the recommended i.e. approved, maximum dose of API-Bioxal is 2.3 g by vaporisation. Remember my comments about the other rubbish stuff API-Bioxal contains, 2.3 g of API-Bioxal actually contains a fraction over 2 g of oxalic acid dihydrate.

This is the active ingredient.

When comparing different experiments where some have used ‘plain’ oxalic acid dihydrate and others have used – or will use – API-Bioxal, it’s important to consider the amount of the active ingredient only 9 .

In the US, oxalic acid was registered as an approved treatment for Varroa in 2015. By vaporisation, the approved dosage is 1 g of oxalic acid dihydrate per brood box i.e. half that approved in the UK.

Remember also that a deep Langstroth is 5% larger (by volume) than a National brood box.

And Jennifer Berry and colleagues in the University of Georgia have recently determined whether repeated administration of vaporised oxalic acid to a colony rearing brood is an effective way of controlling and reducing Varroa infestations (Berry et al., 2021).

And the answer is … decidedly underwhelming

Here are the experimental details.

The paper doesn’t state 10 when the experiment was done but they measured honey production in the treated colonies and were definitely brood rearing, so I’m assuming late summer.

Colonies were treated with 1 g / box (double Langstroth deeps) vaporised oxalic acid every five days for a total of 35 days i.e. 7 applications. Mite infestation levels (percent of workers carrying phoretic mites) were measured before and after treatment. Almost 100 colonies were used in the experiment, in three apiaries, randomly split into treated and control groups.

Let’s get the easy bit out of the way first … there was no difference in brood levels, adult bees or food stores at the end of the study. The treated hives were not disadvantaged by being treated … but they didn’t gain an advantage either 🙁 .

Mite levels after treatment normalised to pre-treatment levels (dotted line = no change)

During the experiment the percent mite infestation (PMI) levels in the untreated control colonies increased (as expected) by ~4.4. This is an average and there was quite a bit of variation, but it means that an initial mite infestation level of 4 (average) increased to 8.4 i.e. over 8 mites on every 100 adult workers in the hive.

3% is often considered the cutoff above which treatment is necessary.

Overall, the PMI of treated colonies reduced over the duration of the experiment … but only by 0.7.

From a colony health perspective this is a meaningless reduction.

Seven treatments with the recommended (in the US) dose of oxalic acid stopped the mite levels increasing, but did not reduce them.

Repeated administration of the US-approved oxalic acid dose by vaporisation does not reduce mite levels in a way that seems likely to significantly benefit the colony.

🙁

Dosage, again

I’m not sure the primary data used to justify the US approved 1 g / box dosage. Early studies by Thomas Radetzki (PDF) showed a 95% reduction in mite levels using a dose of 1.4 g. This was a large study involving ~1500 colonies and a dose of 2.8 g was not significantly more effective. I’m quoting the figures for broodless colonies 11.

The Berry results were similar to two smaller previous studies by Jamie Ellis and colleagues (Jack et al., 2020, 2021) who demonstrated that 1 g oxalic acid vaporised three times at weekly intervals was ineffective in controlling mite levels.

However Jack et al., (2021) also applied a similar treatment schedule using different doses of oxalic acid.

Data from Jack et al., 2021 using different repeat doses of oxalic acid

Ignore the intermediate values in panel A, just look at the pretreatment and ‘3 weeks’ mite infestation values.

Mite levels increased in untreated controls and decreased in all treated colonies. However, there was a clear dose response where the more oxalic acid used the greater the impact on the mite levels.

Four grams of oxalic acid reduced the mite infestation rate significantly … from ~5% to ~2% (I’ll return to this). However, the intermediate levels of oxalic acid, whilst reducing mite levels, did not do so significantly from the next closest amount of oxalic acid. For example, 1 g wasn’t significantly more effective than no treatment (as already stated), 2 g was not significantly more effective than 1 g and 4 g was not significantly more effective than 2 g.

But wait … there’s more

I’m familiar with two other studies that look at dose and/or repetition and efficacy (there are more, but this isn’t meant to be an exhaustive review, more a ”Do we know enough?” overview).

Gregoric et al., (2016) published a 12 study that appeared to use combinations of treatments in multiple apiaries. The abstract claims 97% reduction using three 1 g vaporisations, though these are spread over a 57 day period (!) stretching from mid-August to late-November. Mite drop in November following treatment was ~75% (presumably broodless) , but only 10-20% in August. Interestingly I can’t find the figure 97% anywhere in the results …

Finally, Al Toufailia et al., (2015) investigated the dose response to vaporised oxalic acid, showing an 80% reduction in infestation at 0.56 g and 93-98% who using 1.125, 2.25 and 4 g of oxalic acid. All of these studies were determined using broodless colonies.

The Al Toufailia and Jack studies – as well as the Berry study – also reported on adverse effects on the colony. With certain exceptions vaporisation was well tolerated. Some colonies went queenless. Where the queen was caged in late summer to render it broodless (Jack et al.,) some colonies subsequently failed to overwinter successfully (though, look on the bright side, mite levels were reduced 😉 ).

Don’t do that at home … I presume they impacted the production of winter bees.

confused.com

I’m not sure there’s a compelling, peer-reviewed study that definitively shows that repeat treatments of vaporised oxalic acid administered to a brood rearing colony reduces mite levels sufficiently.

Yes, the Jack et al., (2020) showed a significant reduction in the infestation rate (using 4 g three times at seven day intervals), but it was still around 2%.

In late summer, with 20-30,000 bees in the box and 6 frames of brood, that’s still ~600 mites (and potentially more in the capped brood).

In midwinter with about 10,000 workers and much smaller amounts of brood in the hive a 2% infestation rate is still 200 mites.

That’s still a lot of mites for a nearly broodless colony … I treat my colonies when broodless (and assume I’m killing ~90% of the mites present) and am disappointed if there are 45 mites on the Varroa tray. 50 mites on 10,000 workers is an infestation rate of 0.5%.

I’ve waffled on for too long.

All those advocating – or using – repeated oxalic acid vaporisation on brood rearing colonies in late autumn/winter need to think about:

  • dosage … 1 g is clearly too little (at a 5-7 day interval, but what if it was at a 4 day interval?), 2 g is better and 4 g is well-tolerated and certainly more effective
  • frequency … which I suspect is related to dosage. The goal must be to repeat sufficiently frequently that there is never a period when oxalic acid levels fall below a certain amount (and I don’t know what that amount is). 1 g on a daily basis might work well … who knows?
  • duration … you must cover a full capped brood cycle with the repeats
  • adverse effects … inevitable, but can be minimised with a rational treatment schedule

Broodless is best

It really is.

But, if your colonies are never broodless 13 then I wouldn’t be confident that repeat treatment was controlling Varroa levels sufficiently.

I have treated repeatedly with oxalic acid. In the good old days before API-Bioxal appeared. It certainly reduced Varroa levels, but not as well as my chosen Apivar does these days.

Repeated oxalic acid vaporisation is regularly proposed as the solution to Varroa but I’m certainly not confident that the data is there to support this claim.

Take care out there 😉


Notes

In a future post I’ll revisit this … I’ve got a pretty clear idea of how I’d go about demonstrating whether repeated oxalic acid treatments are effective in meaningfully reducing mite levels i.e. sufficient to protect the colony overwinter and through to the following late summer.

References

Al Toufailia, H., Scandian, L. and Ratnieks, F.L.W. (2015) ‘Towards integrated control of varroa: 2) comparing application methods and doses of oxalic acid on the mortality of phoretic Varroa destructor mites and their honey bee hosts’, Journal of Apicultural Research, 54(2), pp. 108–120. Available at: https://doi.org/10.1080/00218839.2015.1106777.
Berry, J.A. et al. (2022) ‘Assessing Repeated Oxalic Acid Vaporization in Honey Bee (Hymenoptera: Apidae) Colonies for Control of the Ectoparasitic Mite Varroa destructor’, Journal of Insect Science, 22(1), p. 15. Available at: https://doi.org/10.1093/jisesa/ieab089.
Gregorc, A. et al. (2016) ‘Integrated varroa control in honey bee (Apis mellifera carnica) colonies with or without brood’, Journal of Apicultural Research, 55(3), pp. 253–258. Available at: https://doi.org/10.1080/00218839.2016.1222700.
Jack, C.J., van Santen, E. and Ellis, J.D. (2020) ‘Evaluating the Efficacy of Oxalic Acid Vaporization and Brood Interruption in Controlling the Honey Bee Pest Varroa destructor (Acari: Varroidae)’, Journal of Economic Entomology, 113(2), pp. 582–588. Available at: https://doi.org/10.1093/jee/toz358.
Jack, C.J., van Santen, E. and Ellis, J.D. (2021) ‘Determining the dose of oxalic acid applied via vaporization needed for the control of the honey bee (Apis mellifera) pest Varroa destructor’, Journal of Apicultural Research, 60(3), pp. 414–420. Available at: https://doi.org/10.1080/00218839.2021.1877447.

Sublimox spares and repairs

Sublimox vaporiser

Sublimox vaporiser …

I’ve been using a Sublimox sublimator (vaporiser) since late 2014. In that time it’s worked faultlessly. There have been only two things that have needed any attention. These are the screws that hold the heat shield in place and replacement of the ‘O’ rings on the nylon cup you load with oxalic acid.

Actually, the other thing that needed attention was the heating chamber that became coated with caramelised glucose when I first used Api-Bioxal … but I’ve posted on that separately.

Screws

The heat shield protects the operator and your easy-to-melt poly hives from the metal heating chamber within which the oxalic acid is vaporised. It’s made out of folded, perforated metal and is held in place with two small retaining screws on the underside.

The heat shield can get a bit of a battering. The sublimator rests on it when the machine is laying on the side. More significantly it can get twisted or pulled if it gets caught on the edge of the hive when inverting it to deliver the oxalic acid. Inevitably, it is also subjected to repeated cycles of heating and cooling.

All of this tends to mean that the grub screws work loose over time. If the machine is cool they can be finger-tightened, but they’ll eventually loosen off again.

Retaining screws ...

Retaining screws …

To rectify this and prevent their permanent loss in the apiary mud I gave them each a dab of Loctite 243 and tightened them up properly 1. This appears to have done the trick and they’ve remained in place without loosening.

O rings

The nylon cup you preload with oxalic acid has an O ring seated in a groove. This provides a gas-tight seal with the metal chamber in which the OA is vaporised.

It’s a tough life being an O ring.

It is subjected to a very harsh environment consisting of both high acidity and high temperatures. With repeated use the O rings become less able to form the gas-tight seal. They get thinner, crack and/or stiffen. Eventually they fail completely.

Once they have failed there’s a significant risk of vaporised oxalic acid escaping. Aside from potentially increasing operator exposure this also means that all that mite-destroying goodness is not being delivered where it does most harm (to the mites in the hive).

Here's two I wrecked earlier ...

Here’s two I wrecked earlier …

Replacement O rings can be purchased from the various suppliers of the Sublimox. Icko used to list them on their website but they appear to have disappeared for the moment. Abelo list them at £2 each.

As an alternative I’ve purchased and am testing some Viton O rings from eBay. Viton 75 is a “DuPont-manufactured fluorocarbon elastomer that exhibit excellent resistance to high temperature and many organic solvents and chemicals over a temperature range of -25°F to +400°F”.

Which sounds ideal for something that needs to work with oxalic acid at a temperature of about 160°C. The documentation from Dupont indicates that Viton has excellent resistance to oxalic acid.

Sublimox nylon cups and O rings ...

Sublimox nylon cups and O rings …

I’ll post on how well these work sometime in the future.

Essential accessories …

Although not really a “spare or repair” it’s worth noting here that the Sublimox requires a 240V supply and so should always be used with an RCD (residual current device). This is particularly important since the apiary in winter is probably a damp (or worse) environment. An RCD, together with a bottle of water for cleaning the vaporiser, can just about be squeezed into the carry case. It’s therefore available whether you use a portable generator or an extension lead to the mains voltage supply.

Spring (or late winter) vigilance

As the season slowly starts, colonies will begin rearing more brood. You don’t need to open the colony up to determine this. Instead, insert a Varroa tray under the open mesh floor and look for thin rows of “biscuit crumbs” that are the cappings from emerging brood.

All is well ...

All is well …

And, while you’re looking at this evidence that the long winter will soon be over, look carefully for any Varroa that have dropped from the colony. Mite drops should be very low if your autumn and midwinter treatment regime was effective.

You need to monitor for at least a week. With low mite numbers in the colony and small amounts of sealed brood the drop can fluctuate a bit.

If the mite drop is not low or non-existent there’s probably no need to treat immediately 2. However, make a note to monitor the colony at regular intervals – both for mites and overt DWV disease – and intervene if necessary.


 

If Carlsberg did vaporisers …

… they’d make the Sublimox sublimator.

I wonder how many beekeepers have one of these on their wish list for Santa?

Sublimox vaporiser

Sublimox vaporiser …

From being a bit of an imported oddity (I had to import mine from Icko Apiculture in France three years ago) they’re now becoming mainstream … over the last year or so they’ve been sold by an independent importer, then Abelo and – just this month – the ‘Big Daddy’ of UK beekeeping suppliers, E. M. Thorne (Rebecca at Thorne’s kindly asked if they could include links in their December newsletter to previous posts here on the Sublimox and vaporising Api-Bioxal).

The Sublimox is also now being discussed more widely on the online forums, with much of this discussion emphasising the price (they are expensive). Aside from this disadvantage, I think there are a number of significant advantages of this design of sublimator (vaporiser) which are worth emphasising.

The general principle of active and passive sublimators

Sublimators (vaporisers) are designed to heat oxalic acid (OA) crystals sufficiently that they sublimate i.e. go through a phase transition from a solid into a gas without an intervening liquid phase. As readers of this site should know, oxalic acid is highly effective against the Varroa mite – both by sublimation and trickling in solution, which has recently been covered in excruciating detail so won’t be elaborated on here.

Varrox

Varrox

Many sublimators (vaporisers) are passive. You add the OA to a pan, slide it into the hive entrance, apply a current to heat the pan, allow the OA to sublimate, withdraw the pan and start again. You usually need to cool the pan in water before addition of the next dose. This heat, rinse and repeat cycle takes time, but is very effective and the pan-type vaporisers are relatively inexpensive (£35-£100).

The Varrox vaporiser is one of the original and best known models, though there are any number of much less expensive copies sold by beekeeping suppliers and on eBay. Most require a 12V supply of some kind.

In contrast to these, the Sublimox is ‘active’, as is the US equivalent machine, the ProVap 110. In these the pan is pre-heated, the OA is ‘dropped’ into the pan in such a way that the vapour is generated in an enclosed space which it then escapes under pressure through a nozzle.

Probably the best sublimator in the world …

In terms of speed, convenience and ease of use I’d argue that the Sublimox is hard to beat.

Quick

Delivery of a single dose takes no more than 45 seconds from inserting the Sublimox nozzle into the hive. It’s appreciably faster than the pan-type passive sublimators. There’s a preliminary warming up period before use, as the machine reaches operating temperature. After that it’s simply treat, refill, treat, refill ad infinitum. The rate-limiting step is sealing the hive and refilling the small plastic ‘cartridge’ with OA.

For one person, a hive-a-minute is just about possible – if you have 10-20 closely spaced hives, sufficient entrance blocks and buy additional white plastic cartridges. But, to achieve this you’ll be rushing about like a mad thing and it’s not realistically achievable1.

But speed isn’t the major benefit.

Convenient

Sublimox vaporiser

Sublimox vaporiser

It’s convenient because you can ‘squirt’ the gas through a small hole in hive. You don’t need to open the hive and so it works with any hive type or entrance. My favoured kewl floors cannot be used with a sublimator that needs to be pushed through the entrance. Instead, all my hives have a neat 6mm hole drilled through the sidewall of the floor which is usually plugged with a small foam bung or twist of grass2. Vapour quickly permeates throughout the hive, ensuring all surfaces are reached.

The only exception are the all-poly hives, such as the garishly coloured Abelo’s I’ve been using for work this season. The nozzle of the Sublimox gets hot and melts polystyrene (been there, done that 🙁 ). With poly hives I usually use a simple shallow eke with a Sublimox nozzle-sized hole in one side. In this case you do need to remove the roof and crownboard, add the eke, replace the roof (upside down), treat and then close up the hive.

Foam bung ...

Foam bung …

The alternative is to simply squirt the gas through the open entrance. This isn’t ideal as some of the gas will escape, potentially exposing the beekeeper and definitely not exposing the bees/mites. One way to avoid this loss of gas is to use a wooden block with a small hole through the middle held over the poly hive entrance.

It’s important to have a clear space into which the gas is ‘squirted’. If you don’t the OA tends to not permeate through the hive properly.

The Abelo hives have a hole in one face of the brood box. This is usually plugged. I think it’s intended as an upper entrance. I’ve yet to try poking the Sublimox nozzle through this hole to deliver the OA … this might not work as it may be too close to the frame, so impeding the spread of gas through the box. Time will tell.

Safety considerations

There’s an additional benefit of the way the Sublimox is used. Operator exposure to OA should be minimised. The gas isn’t generated until the machine is inserted and inverted and takes no more than ~45s to deliver. If the hive is sealed properly there’s very little exposure to the gas.

… but all this comes at a cost

The Sublimox is three-times the price of a Varrox vaporiserIs it worth it? That’s up to the purchaser to decide, based on the number of hives to be treated, the depth of their pockets, the perceived benefits of the speed, ease of use, convenience and safety etc.

Many will baulk at the cost. Some build their own. Others don’t bother vaporising, but solely dribble OA solution in midwinter. This is the cheapest and fastest way to treat colonies. I estimate it costs about 0.5p/hive to trickle treat if you buy OA in 25kg bags. Dribbling is probably even faster than using the Sublimox. However, dribbling is really only practical for broodless colonies – swarms and for midwinter use – and should only be done once per season. In contrast, repeated sublimation is tolerated well by colonies.

Would I buy another one?

Almost certainly.

Before you splash the cash

Generator

Generator …

Be aware … the Sublimox requires a 240V supply. One of my apiaries has mains power which is the best solution, but unlikely in the corner of a farmers field. You can use an inverter from a car battery which is fine if you can get your car close enough to the hives. Alternatively – and this is what I do – you can use a portable generator. I’ve got an 700W Impax one from Screwfix which works perfectly.

But that’s another £190  🙁

You’ll also need to periodically buy replacement sealing rings for the OA “cassette”. These wear out or perish rather fast. Icko sell them for a daft price, but they’re now available in the UK.

Single use ...

Single use …

You should also be aware that Api-Bioxal, the VMD-approved oxalic acid-containing miticide, has glucose in it which caramelises in the pan of the Sublimox (and other vaporisers) and is a bit of a nightmare to clean out properly. I’d go further and suggest that Api-Bioxal is unsuitable to use with a Sublimox. If the nozzle is blocked the gas has to escape and there could be inadvertent exposure of the operator.

Safety first

I’ve touched on safety above. However, just because OA vapour is generated for a very short and well defined time doesn’t make it safe. There are still exposure risks which must be taken seriously.

You’ll need PPE – personal protection equipment – to prevent exposure to the OA vapour when treating colonies. This includes eye protection and a suitable vapour mask. Don’t skimp on this and assume you’ll just stand downwind. If the hive is poorly sealed, swirling gusts of wind will expose you to vapour and it’s – at best – very, very unpleasant.

Entrance block

Entrance block …

Unlike passive vaporisers, the Sublimox generates a very large volume of gas immediately the OA is added. There’s no opportunity to ‘stand well back’ as the pan warms up as you can with the passive machines. You have to be holding the Sublimox to invert it and drop the OA into the pan. You’ll be bent over the hive and unable to avoid the swirling fog of acidic vapour if it escapes. To help minimise this seal the hive thoroughly. I use a full-width entrance block and tightly fitting Varroa tray. Even then, particularly on ageing cedar hives, there are all sorts of little gaps from which the OA vapour can be seen escaping.

Entrance block in use

Entrance block in use …

Finally, as if gassing yourself with an evil smelling acidic cloud of OA wasn’t enough, remember you’re using a 240V supply outside, probably on damp grass … or possibly even in the rain. Don’t get electrocuted. Make sure you use an RCD (residual current device) that’s been tested and you know works.

Take care.

Share the costs

At the time of writing the Sublimox costs over £300. Perhaps competition will force the price down a bit? When you consider that these machines are used relatively infrequently during the season it makes sense to consider purchasing them as an Association item (or with a group of friends), in the same way that some associations have extraction equipment available.

When compared to a reasonable extractor the Sublimox doesn’t seem so outrageously priced.

Of course, like an extractor, everyone needs it at about the same time of the season (at least in midwinter). However, unlike an extractor, it’s generally needed for a relatively short period, is easy to transport and easy clean after use. There should be no reason it couldn’t be shared by association members.

I appreciate that many associations don’t have shared equipment, or many beekeepers don’t belong to their local association. All I’m doing is suggesting a way in which a good quality and highly effective piece of equipment could be purchased so that many can benefit.

Whether you’ve got one of these on your list for Santa or not …

… Happy Christmas!


1 The rate-limiting step is probably having enough entrance blocks. If removed too soon you’ll lose lots of vaporised OA goodness. Leave it a good 5 minutes if at all possible, which is easily enough time to treat another 5 hives. See what I mean?

When treating a hive for the first time I’ve even drilled this hole through an occupied hive.

† Actually, this hole isn’t suitable. It opens onto the face (rather than end) of a frame, and the vapour is therefore restricting from spreading. Don’t bother.

‡ I’ve regularly treated colonies in the dark. Sometimes the only time I can get to the apiary is after work. The bees are all ‘at home’ but you can easily seal the hive up and treat them. Use a headtorch with a red bulb. Since bees can’t see red, any that escape won’t directly target your head and you can probably work safely without a veil.

Colophon

If Carlsberg did … is one of the most recognisable advertising campaigns of all time. Originally created in 1973 it has achieved near-universal recognition and remains in daily use, though predominantly these days as internet memes. The opening three words of the adverts were as recognisable as the closing seven … probably the best lager in the world.

There are any number of comedic If Carlsberg did ‘advertising’ campaigns, including some from Carlsberg itself … Probably the best poster in the world, featured the distinctive swirly underscore, colour scheme and font, together with a real tap dispensing lager installed in Londons Brick Lane.

If Carlsberg did ...

If Carlsberg did …

Carlsberg revamped the advertising campaign in 2015 (the poster above was part of this), over 40 years after it was first used. You can view these adverts on the Carlsberg website.

I’ve used a variant of the If Carlsberg did … phrase previously, when describing the large Dadant smoker. It’s still a great smoker.

Size matters

Anyone reading the beekeepingforum.co.uk will be aware that there are a number of contributors there that enthusiastically recommend the treatment of colonies with vaporised (or, perhaps more accurately, sublimated) oxalic acid to reduce Varroa levels.

There goes a few pence ...

There goes a few pence …

Although vaporised oxalic acid (OA) has been used by some for many years, the speed with which it has recently been embraced by many UK beekeepers (at least those that contribute to discussion forums and, perhaps to a lesser extent, those I speak to in associations over the winter) probably reflects two or three things:

  • an awareness of just how effective oxalic acid is as a treatment
  • the increased availability of commercial oxalic acid vaporisers (or Heath Robinson-like plans to build-your-own)
  • the huge price-differential between oxalic acid and most other treatments

There are almost as many homegrown or imported vaporisers as there are treatment regimes to hammer down the mite levels. Of course, there’s the contentious point that oxalic acid is not approved by the VMD (Veterinary Medicines Directorate), despite having been in routine use for decades. Api-Bioxal is, but is probably unsuitable for sublimation due to the inert (as far as Varroa are concerned) additives it contains. Api-Bioxal can be vaporised but leaves a caramelised residue in the vaporiser pan that is hard to clean.

Out, damn'd mite ...

Out, damn’d mite …

‘Vaping’ is also popular in the US. Randy Oliver has covered it extensively on his scientificbeekeeping.com site and it’s also regularly discussed on Beesource. OxaVap make/supply a vaporiser that appears very similar to the Sublimox I use. The OxaVap model has a useful temperature display that I would find much easier to read than the red/green diodes on the Sublimox … I’m red/green colourblind.

Active and passive vaporisers

The Sublimox and OxaVap vaporisers are ‘active’ … they blow out a dense cloud of OA-containing vapour through a relatively narrow diameter nozzle (the video below uses water to demonstrate this process). This provides advantages both in terms of ease and speed of delivery. These vaporisers simply need a 7mm hole drilled through the sidewall of the floor (see photo at the top of the page), or through an eke placed over the colony. The OA-containing vapour is ‘squirted’ in, permeates all corners of the hive within seconds and you can then move on to the next hive. The vaporiser doesn’t need cooling between treatments and the dose administered is tightly controlled.

Big Daddy

However, OA dosage isn’t critical. It has been shown to be well-tolerated by bees in studies from groups in the UK and Germany. If the dose isn’t critical and speed really is important then perhaps consider the vmVaporizer. At $3600 it’s about ten times the price of a Sublimox.

vmVaporizer ...

vmVaporizer …

The manufacturers claim you can treat 300 hives an hour with one of these … one every 12 seconds. For comparison, the Sublimox takes 20-30 seconds per hive. However, what takes the time is sealing the hive, moving the generator about, unsealing the hive etc. so you’d need a team of (well protected) helpers and some closely spaced hives to achieve a similar rate. The vmVaporizer is mains (110V) powered so would also need a generator or inverter.

The video above demonstrates the vmVaporizer in action. It produces copious amounts of oxalic acid vapour, albeit less ‘forcefully’ than the Sublimox. It seems the only way to control how much is delivered is by changing the duration the hive is exposed for.

Undoubtedly this is overkill for the majority of readers of this site, but it’s interesting to see what the commercial beekeeping community are using (much like browsing the decapping or bottling machines in the Swienty catalogue). There’s at least one satisfied UK-based beekeeper quoted on the vmVaporizer site so … Mark, if you happen to read this I’d be interested in how well the machine works and whether you can achieve the quoted hive treatment every 12 seconds?

And, does it work with Api-Bioxal?

😉

 

Vaporising Api-Bioxal

Vaporising Api-Bioxal leaves a burnt caramelised residue in the vaporiser. This is difficult to clean. Does this damage the vaporiser or make it work less efficiently?

Forget it ...

Forget it …

I remortgaged the house, took my kids out of university and cancelled both trips to Mauritius later this year, all so I could afford some Api-Bioxal (a snip at £10.99 for 35g from Thorne’s). Api-Bioxal is the VMD-approved oxalic acid-containing miticide. Only ‘containing’ as – according to the manufacturers instructions – only 88.9% of the dodgy-looking white crystalline powder is actually oxalic acid (OA). The remaining ~11% is a mixture of glucose and powdered silica (VMD documentation [MS Word]) . As cutting agents go, these are relatively harmless. Nevertheless, some have expressed concern that the presence of glucose might leave a horrible gunky mess (a widely accepted technical term) in the bottom of the vaporiser. Let’s see …

Since I’d promised to help a friend with vaporising a few hives that were disappointingly Varroa-riddled when treated earlier in the winter, this seemed a good opportunity to do a side-by-side comparison of Api-Bioxal and OA vaporisation – in terms of residues, not efficacy¹. My vaporiser is an ‘active’ model (made by Sublimox) in which the vaporised oxalic acid is forced out through a small nozzle in about 20-30 seconds (see video). In use, the OA crystals are dropped into a preheated pan – by inverting the Sublimox – so the temperature change from ambient to 157ºC happens more or less instantaneously. Any comments below therefore might not apply to the passive vaporisers like the “Varrox”, or the plethora of home-grown ones² on the forums or variants listed on eBay. In the majority of these types the powder is added to a pan which is then heated to the sublimation temperature³.

At the start of the trial the pan of the Sublimox was clean, contained no residues and was only slightly tarnished (from historical use). This machine has been used dozens of times previously and in each case has been washed out with clean water after use as instructed by the manufacturers.

After a single colony was treated with 1.6g of Api-Bioxal the pan of the Sublimox contained an obvious charred residue.

Single use ...

Single use …

We treated one further hive with Api-Bioxal and took another photograph of the vaporiser ‘pan’ which now contained an even more obvious charred caramelised deposit, bubbled and lumpy in places. This wasn’t a loose flaky deposit, it was burnt onto the base and lower sidewalls of the vaporiser ‘pan’.

Two treatments ...

Two treatments …

In use the ‘collar’ around the plastic (delrin?) cups used to deliver the OA/Api-Bioxal usually have slight traces of the powder left around them. These were particularly obvious when using Api-Bioxal though I’m not sure any greater amount of powder was left here … it just looked a lot worse. It was also more difficult to clean off than ‘pure’ OA.

Plastic cup ...

Plastic cup …

The caramelised charred residues remaining in the vaporiser after two Api-Bioxal treatments needed a combination of scraping with a knife and repeated rinsing with boiling water to remove it. This took several minutes and would clearly be impractical (and irritating) to do between treatments, meaning that the residues would build up quickly over time. Compare the first and second image in the series above to see how much residue builds up at each use (and see the note below regarding the amount vaporised).

Cleaned vaporiser ...

Cleaned vaporiser …

I then added 1.6g of standard oxalic acid dihydrate (Thorne’s) and vaporised it before immediately photographing the unwashed pan and cup. The photo below should therefore be compared directly with the first in this series. You can see the traces of OA powder at the end of the nozzle of the vaporiser, but the pan is completely clean and contains no additional charred and caramelised residues. This vaporisation was done ‘in the open’ (i.e. not into a hive) and it was interesting to see how long it took the extensive cloud of crystals – perhaps 5 x 2 x 2m in extent – to dissipate as it gently drifted away downwind.

Single OA use ...

Single OA use …

But it gets worse …

I actually used much less Api-Bioxal per hive than the manufacturers recommended 2.3g per colony (this is partly because there is published evidence that ~1.4g is sufficient and double that amount provides no increase in mite killing). I didn’t weigh the Api-Bioxal but used one measuring scoop that – from previous tests – is known to contain ~1.6g of OA when full. Had I used the full recommended dose of Api-Bioxal I would have therefore expected the residue build up to be about 50% worse than shown above. On a vaguely brighter note, the powdered Api-Bioxal pours easily and smoothly, presumably because of the anti-caking agents it contains.

What are the implications of this?

I am very disappointed with the amount of residues left in the vaporiser after using even a single (less than recommended) dose of Api-Bioxal. I’m also disappointed with how difficult these are to clean out of the vaporiser. Might these residues damage the vaporiser, for example by blocking the nozzle, or reduce the effectiveness of vaporisation, for example by not allowing the pan to heat as evenly or quickly? I think both of these are a distinct possibility. An advantage of vaporisation is the ease and speed with which OA can be administered. If the vaporiser needs to be cleaned between every (or even every few) hives it would significantly reduce the attractiveness of this type of Varroa treatment. Remember, if you take your PPE seriously – which you should when vaporising oxalic acid – you’ll be wearing gloves, a respirator/mask and goggles throughout this entire procedure, including cleaning out the residues from the hot vaporiser.

No thanks.


 

Update … 22/2/16

Chris Strudwick kindly sent me before and after photographs of a Bioenoxal vaporiser that had been used once with Api-Bioxal. The ‘before’ image (left) shows the machine after vaporising 1.6g of Api-Bioxal. The ‘after’ shows the “result of 5 minutes with a nylon pan scourer and water after an initial scraping with a hive tool” … so the gunk can be cleaned off, but it takes time.

Many thanks Chris


¹This would have entailed treating hives with a known Varroa-load with either Api-Bioxal or OA. This was not done.

²Some of the DIY vaporisers are either spectacularly dangerous or have been designed without an appreciation of the temperature control required to vaporise oxalic acid.

³If you have a “Varrox”-type vaporiser I’d be interested to hear your experience with using Api-Bioxal.