Category Archives: Swarm prevention

Feral facts and fallacies

Synopsis : Are feral colonies recently lost swarms or a self-sustaining ‘wild’ honey bee population? The latter must reproduce faster than they perish. Measuring rates of colony loss and nest occupancy provides a good indicator of the likely origin and independence of feral populations.

Introduction

Most colonies try to swarm every year. Most – not all – but if your colonies are strong and healthy they are likely to swarm. That’s why swarm prevention and subsequent swarm control are such important skills for the tyro beekeeper to master. Without swarm control the majority of the workforce is ‘lost’, the residual colony will be left temporarily queenless and the potential honey crop is probably much reduced.

A small swarm

A small swarm …

It is not difficult to become competent at swarm prevention and control. However, any beekeeper who claims to never lose swarms is probably being ‘economical with the actualité’ as the late Alan Clark once said.

What happens to those ‘lost’ swarms?

Some forward-thinking beekeepers set out bait hives. Any swarms that end up being attracted to these ‘swarm traps’ will eventually find their way back to a managed apiary. Some swarms end up in the church tower where ‘there have always been bees’, according to local parishioners.

Others move into the roof space above the entrance to the local nursery school, causing fascination, irritation and consternation in equal measure. Their fate depends upon whether the head teacher contacts a beekeeper or a pest controller … but their arrival reinforces the importance of swarm control and the use of bait hives.

A bait hive deployed in mid-April in good time for the swarming season ahead

And other swarms disappear over the apiary fence, across the field and into the local woods, eventually establishing a new colony in a suitable hollow tree.

No risk, no reward

Swarming is a risky business. The swarm leaves with the majority of the flying bees and the mated queen. However, it takes more than that to establish a functional colony. They need to draw comb, rear brood and collect sufficient stores to get through the winter.

That’s a tall order and most swarms fail.

Data from Thomas Seeley in The Lives of Bees suggests that only about 23% of swarms survive the winter.

In contrast, the swarmed colony has about an 80% chance of survival. They’ve got drawn comb, stores, eggs and larvae … ‘all’ they need to do is rear a new queen.

And then they’re likely to swarm again the following year 1. In fact, without swarm control, the average number of swarms produced by a colony is two per year – presumably a prime swarm (headed by the old queen) and a cast (headed by a virgin queen).

So, swarming is risky, but those swarms that succeed in establishing a new colony and overwintering can themselves attempt to reproduce again the following year.

That’s the reward.

Where are all these bees?

Even taking account of the exemplary swarm control by the UK’s ~25,000 beekeepers 2 I’m reasonably certain that a lot of swarms are lost every year.

Where do all these bees go?

I’ve been told of lots of churches or schools or trees with resident bees.

Quiet churchyard

A swarm magnet … or just an old church?

However, it’s certainly not every church, or school or hollow tree that’s occupied. Even when there’s a surplus of suitable nest sites, those that are occupied by a colony are the exception, not the rule.

The main reason of course is Varroa.

In the absence of intervention to reduce the mite population, the developing winter bees get parasitised by Varroa, and the resulting high levels of deformed wing virus (DWV) reduces the longevity of these necessarily 3 long-lived bees.

Consequently the winter cluster shrinks in size, from that of a football (early October) to a honeydew melon (late December) to a large orange (early February).

And then it freezes to death during a cold snap 🙁 .

The apiary in winter ...

The apiary in winter …

Numerous studies have shown that untreated colonies, in the absence of any natural resistance or tolerance to Varroa or DWV (though the latter is rarely discussed, and even less frequently tested for), almost always perish within a year or two of Varroa infestation.

Look back at the recent post on Biological control with Varroa for a reminder of the devastation wreaked on an island population of honey bees after the introduction of mites.

Wild? They’re livid feral …

Technically, swarms lost by beekeepers (that become established in the environment) are probably best termed feral colonies.

Originally feral meant simply ‘wild or untamed’, but the more common usage these days means ’animals or plants that have lapsed into a wild form from a domesticated condition’.

Bees aren’t domesticated, but I think feral conveniently encompasses their origin.

However, I’m more than happy to accept that a colony, initially feral, that becomes well-established in the church tower and throws off a swarm or two every year, that requeens every two or three seasons, surviving without intervention or management, must be considered ‘wild’ at some point.

It’s not worth discussing when a colony transitions from feral to wild.

It’s semantics, though I think the distinction between ‘recently arrived from a swarmed managed colony’ and ‘self-sustaining’ is an important one.

Notwithstanding the ravages of Varroa, whether feral or wild, there are colonies in the environment – churches, schools, trees – and probably rather more than many beekeepers are aware of.

The missing bees

Periodically there’s a little flurry of interest in the press about ‘long lost’ or ‘missing’ wild bees discovered in the woods.

Late last summer there were articles in all the newspapers about bees found on Blenheim Estate. The Observer reported this discovery with the headline ”No one knew they existed”: wild heirs of lost British honeybee found at Blenheim.

‘Blenheim bees’ article in the Observer, 7-11-21

As an aside – as this isn’t the real topic for discussion today – there are at least three challenging claims made in that headline; how can you be sure that no-one knew they existed? Is the British honey bee (it is not honeybee) actually lost? How do you know that these bees are their heirs?

Pedantic is my middle name.

But the 2500 hectare Blenheim Estate 4 isn’t the only location with apparently self-sustaining populations of honey bees. There are trees, churches and (I dare say) even nursery schools up and down the country that appear to have a ‘resident’ colony or two of bees.

Periodically they’re observed swarming. Sometimes things seem a bit quiet in the spring, but perhaps it’s too cold for the bees to be flying strongly anyway.

By May there’s a lot of activity so all must be well.

Right?

Perhaps 😉

Citizen science

These wild/feral colonies are infrequent but widely distributed. They are therefore difficult for one person to regularly observe. As a consequence there are several ‘citizen science’ projects monitoring some of these sites. Magnus Peterson regularly reports in The Scottish Beekeeper on the one he coordinates for the University of Strathclyde.

The criticism of these types of studies – certainly not Magnus’s specifically – but any study the largely relies upon infrequent observation by volunteers, is that stuff gets missed. A visit doesn’t happen because it’s raining hard. Or it does happen in heavy rain and no activity is observed and the colony is recorded as dead.

Or worse, recorded as alive, but not flying because of the heavy rain.

With more systematic observation, though not necessarily more frequent, you can have increased certainty that the site that was occupied last autumn is still occupied this spring.

The timing of these observations is important. Three per season is probably the minimum, early, mid and late, but they have to be at particular times of the season – see below.

Crowdfunding

So, let’s assume a colony is found in the autumn and the same hollow tree is occupied in late-April the following year … yippee, the colony is still alive.

Feral – or are they now wild? – bees living successfully with Varroa (at least presumably living with Varroa if they’re almost anywhere in mainland UK).

Perhaps they’ve evolved to have some interesting and useful trait(s) that renders the colony resistant to or tolerant of the dreaded parasitic mites?

These are valuable bees.

They are an important genetic resource.

They must be protected at all costs.

Perhaps it’s time to set up a web colony cam to record their activity? That’s going to cost a pretty penny, so some crowdfunding is needed.

A website is created … a dozen mini-nucs are purchased for the ambitiously planned queen rearing programme and – inevitably – there’s a misquoted article or two in the Guardian.

But hold on …

Are they really the same colony in April that were there the previous autumn?

How can you be sure?

How can you be certain that it’s not an unseasonably early swarm that was missed by the – usually eagle-eyed – local beekeepers? 5

It’s not unusual to find the odd charged queen cell during the first colony inspection of the season. At least, I’ve sometimes found queen cells during that first inspection. I’m sufficiently experienced to not go rummaging about in the boxes too early in the season, and so I am sometimes surprised at how well developed the colony is when I open the box.

Charged queen cell

But what if it had been raining, so I’d postponed the inspection?

On the next warm spring day – well before I was able to return to the apiary – the colony could swarm.

I’ve regularly seen April swarms in Scotland and there are many reports of even earlier swarms on social media every year.

Perhaps the active ‘overwintered’ colony is nothing of the sort.

Maybe it’s just been occupied by a very early swarm?

To be sure it’s the same colony you need to do some genetic testing. If the colony is the same the genetic testing will show identity. If the testing shows significant variation then it’s a different colony.

And, if you combine some genetic testing of overwintered colonies with three carefully-timed visits – late season, very early season and mid-season – to a large number of wild/feral colonies, or likely sites that they would occupy, you can determine their longevity and whether they are a self-sustaining population.

Bee trees

And I wouldn’t have given that long and rambling introduction if there wasn’t a recent scientific paper where they’ve done exactly that (Kohl et al., 2022). I’ll describe it briefly as it’s a nicely written and compelling story. The paper is open access, so you can read it if you want to check my interpretation of the data.

Importantly, I think it provides a very good guide to both the quality and quantity of data that are needed to be sure a population of bees are truly wild and self-sustaining 6 … or just regularly boosted by careless local beekeeping!

Feral colonies are few and far between. It’s hard work walking around the woods looking for hollow trees that may (but probably won’t) contain a colony. You find lots of trees with holes, but they need to lead to a suitably-sized cavity to be of any use to a colony of bees. Binoculars help (the holes are often 15 metres off the ground) … but perhaps there are better ways of doing this?

A bee tree?

Bee-lining – as described by Seeley in Following the Wild Bees – is an effective way of tracking down wild colonies, but needs good weather, good forage and ample time. It works well when locating a few colonies, but probably takes too long if you want 100+ to produce a statistically compelling set of results.

But what if you also wanted to record how many new nest sites are occupied? You would need to know where the empty cavities were before they were occupied. That’s not something you can determine by bee-lining, so you’re back to traipsing around the woods with a pair of binoculars.

Woodpeckers

But in Germany they have some very large woodpeckers.

The black woodpecker (Dryocopus martius) is a crow-sized bird that excavates correspondingly large holes for nest sites in old-growth forests. The average volume of a black woodpecker nest is about 10 litres, smaller than optimal for a swarm, but appreciably larger than most ‘natural’ tree cavities.

Black woodpecker

Conveniently, there are high-resolution maps of (historical) woodpecker nesting trees in old-growth forests in Swabian Alb, Weilheim-Schongau and the counties of Coburg and Lichtenfels. 98% of these woodpecker nest sites are in large beech trees, most are 10-12 metres above ground and with an entrance of ~10cm diameter (again, not optimal, but better than no nest site for a swarm).

Kohl and colleagues surveyed about 460 of these ‘cavity’ trees three times per season; in July (after the main May/June swarming season) to determine peak occupancy rates, in mid/late September to determine late summer survival and in early/mid April to determine winter survival.

‘Occupancy’ was determined by visual inspection and regular forager activity and/or pollen loads (i.e. they ignored scout bees checking empty cavities). In addition, for some colonies, a dozen or so workers were collected for genetic analysis.

With these data, the mathematical calculation of annual survival rates could be determined, as could the prediction of the annual numbers of swarms needed per colony for the population to be self-sustaining 7. In addition, it was possible to determine the average lifespan of a colony.

There were a bunch of perfectly reasonable assumptions made, based upon the known biology of honey bees – all are listed in the paper.

Yo-yoing colony numbers

The scientists counted colony numbers, but could also determine colony densities per km2. By making observations over a 3-4 year period it was strikingly obvious that the largest number of ‘cavity’ trees were occupied after swarming in summer, but that numbers dropped dramatically overwinter. This ’recurring temporal pattern of population fluctuations’ is very obvious in the major data figure in the paper.

Temporal population fluctuations of feral honey bee colonies in Germany; A) occupancy rates, B) population density

The average maximum occupancy rate and population density was 11% and 0.23 colonies per km2. This ‘dropped massively’ over the winter to just 1.4% and 0.02 colonies per km2.

The majority of nest sites (n = 112) occupied in late summer were unoccupied the following spring, before swarming started. 90% of colonies survived the summer (from July until late September), but only 16% of colonies survived the following winter.

The spring survival rate was calculated as 74% based upon genetic testing of colonies in early spring and mid-summer

Knowing the summer, winter and spring survival rates enables the annual survival rate to be calculated.

This was a sobering 10.6%.

Therefore, to maintain a stable population, each surviving colony would need to produce an average of 8.4 swarms per season.

That’s an unachievable amount of swarming.

The average lifespan of a feral colony in these three German forest regions was just 0.619 years … a little over 32 weeks.

Clearly, these honey bee populations are not self-sustaining.

Are these German forests typical?

There are two other regions where similar quality data exists for wild/feral honey bee populations. These are the Arnot forest in the USA, studied for decades by Thomas Seeley, and Wyperfield National Park in Australia.

There are striking differences between these two regions and the German forests, both in terms of colony lifespan and swarm numbers needed to be self-sustaining.

For the Arnot forest and Wyperfield National Park, lifespan was calculated as 1.34 and 1.53 years respectively (cf. 0.62 years for Germany), with annual survival of ~50% (cf. 11% in Germany). Annual swarm numbers per colony for the population to be self-sustaining was 0.94 and 0.85 for the the Arnot forest and Wyperfield National Park respectively (cf. 8.43 for the German forests).

Other than these obvious differences in the related figures for survival/longevity and ‘swarms needed’ the other significant difference between self-sustaining populations (like the Arnot forest and Wyperfield National Park) is the colony density.

In areas where feral/wild honey bees are self-sustaining the colony density is at least 1 per km2. In contrast, in Germany and a large number of other studied feral populations in other parts of Europe (including Ireland, Spain, Serbia, Poland and other regions of Germany), the colony density is usually much lower, at 0.1-0.2 per km2.

So, these German forests are seemingly typical of honey bee populations that are not self-sustaining. These are regions where the feral population is boosted annually (and is essentially dependent upon) an influx of swarms that become temporarily established in natural nest sites.

Environmental colony density

Where do all these swarms come from?

The average managed honey bee colony density in the areas of Germany studied is 4 per km2, appreciably higher than either the Arnot forest or Wyperfield National Park. Precise figures for these two were not quoted, but in both locations the feral colonies (remember, these were at ~1 per km2) outnumber managed colonies.

It therefore seems very likely that managed colonies from farmland areas surrounding the German forests acts as the source for swarms, and the latter – because of the paucity of suitable nest sites in the arable land (relatively few buildings, few mature trees etc.) – gravitate towards the forests looking for suitable nest sites.

Feral and managed colonies may therefore be spatially separated, though not very widely. In contrast, in urban environments – where nest sites are probably common – it might be expected that feral and managed colonies are intermixed in the environment.

A by-product of the study by Kohl and colleagues is that they could also calculate the difference in the relative attractiveness of woodpecker nests that had previously, or had never, been occupied by bees. When new colonies occupied woodpecker nest sites there was a strong preference of 5 to 15-fold for sites that had previously been occupied by bees.

This, of course, is why it makes sense to include a single old, dark comb in your bait hives.

That seems like a good place to stop …

I think this German study is interesting. It shows the quantity and quality of data needed to make a compelling case that a location has a self-sustaining population of feral/wild honey bees.

Such locations are likely to exhibit colony densities of at least 1 per km2 and to be physically separated from higher density managed colonies. This physical separation could be in the form of simple geographic isolation – just a long way from other apiaries – or something more complex like being surrounded by high hills or water etc.

Self-sustaining wild/feral populations are likely to exhibit >50% annual survival rates, to live for an average of ~1.5 years and to produce about 0.8-0.9 swarms per colony per year 8.

If survival rates are lower, or the life expectancy of a colony is much less, then the number of swarms needed to maintain the population rapidly becomes so high that they are unattainable.

In which case, large numbers of feral/wild colonies cannot be self-sustaining, but instead must be present because the area acts as a ‘sink’ for lost swarms from nearby managed colonies.

This post is already longer than my self-imposed-but-regularly-exceeded 3000 word limit so I’ll save further discussion of the Blenheim bees and other feral colonies for another post.

However, I hope the study shows that a healthy scepticism is perhaps sensible when considering any claims made about self-sustaining feral colonies.

That church tower in which ‘there have always been bees’ may well have had bees in it every year.

But that’s not the same as having the same bees in it.

In fact, with an ~90% attrition rate of feral colonies annually it’s very unlikely to be the same colony in successive years.


Note

In the final stages of completing this post – very, very late at night – I re-discovered an article (Moro et al., 2018) on citizen science and feral colonies that I’ll return to sometime in the future.

References

Kohl, P.L., Rutschmann, B. and Steffan-Dewenter, I. (2022) ‘Population demography of feral honeybee colonies in central European forests’, Royal Society Open Science, 9(8), p. 220565. Available at: https://doi.org/10.1098/rsos.220565.

Moro, A. et al. (2021) ‘Using Citizen Science to Scout Honey Bee Colonies That Naturally Survive Varroa destructor Infestations’, Insects, 12(6), p. 536. Available at: https://doi.org/10.3390/insects12060536.

 

Latitude and longitude

Synopsis : Bees don’t use a diary. Colony development is influenced by local environmental conditions. These are largely determined by latitude and longitude but also vary from year to year. Understanding these influences, and learning how to read the year to year differences, should help you judge colony development. You’ll be better prepared for swarm prevention and control, and might be able to to identify minor problems before they become major problems.

Introduction

Writing a weekly post on beekeeping inevitably generates comments and questions. Over the last 5 years I’ve received about 2500 responses to posts and at least double that in email correspondence. That works out at ~30 comments or questions a week 1.

Every one of them – other than the hate mail and adverts 2 – has received a reply, either online or by email.

Some are easy to deal with.

It takes just seconds to thank someone for a ”Great post, now I understand” comment, or to answer the ”Where do I send the cheque? question.

Others are more difficult … and the most difficult of all are those which ask me to diagnose something about their hive.

I almost always prefix my response by pointing out that this sort of online diagnosis is – at best – an inexact art 3.

Patchy brood pattern

Patchy brood & QC’s …

Think about it … is your definition of any of the following the same as mine?

  • a strong colony 4
  • an aggressive colony
  • a dodgy-looking brood pattern 5
  • a ‘large’ queen cell

Probably not.

Engaging in to and fro correspondence to define all these things isn’t really practical in a week containing a measly seven 24 hour days.

Geography

However, having stated those caveats, there’s still the tricky issue of geography.

Many correspondents don’t mention where the hive is – north, south, east, west (or in a couple of instances that they are in the southern hemisphere 6).

Location has a fundamental impact on your bees. The temperature, rainfall, forage availability etc. all interact and influence colony development. They therefore determine the timing of what happens when in the colony.

And so this week I decided to write a little bit about the timings of, and variation in, environmental events that influence what’s going on inside the hive.

I’ll focus here on latitude and temperature as it probably has the greatest influence. My comments and examples will all be UK based as it’s where a fraction over 50% of the readers are, but the points are relevant in all temperate areas.

Latitude

Temperate climates – essentially 40°-60° north or south of the equator – experience greater temperature ranges through the year and have distinct seasons (at least when compared with tropical areas). Whilst latitude alone plays a significant role in the temperature range – smaller nearer the equator – the prevailing wind, altitude, sea currents and continentality 7 also have an important influence.

For starters let’s consider the duration of the year during which foraging might be possible. I’ll ignore whether there’s any forage actually available, but just look at the temperature over the season at the northern and southern ends of mainland Great Britain.

I arbitrarily chose Thurso (58.596°N 3.521°W) and Penzance (50.119°N 5.537°W) for these comparisons. Both are lovely coastal towns and both are home to native black bees, Apis mellifera mellifera 8.

The lowest temperature I have observed my native black bees flying on the west coast of Scotland was about 8°C 9. So, let’s assume that the ‘potential foraging’ season is defined by an average maximum daily temperature above 8°C.

How do Penzance and Thurso compare?

Thurso – average Max/Min temperatures (°C)

In Thurso there are eight months (November just squeezed in by 0.1°C) where the average maximum daily temperature exceeds 8°C.

Penzance – average Max/Min temperatures (°C)

In contrast, every month of the year in Penzance has an average maximum daily temperature exceeding 8°C.

Thurso and Penzance are just 950 km apart as the bee flies.

Forage availability

I don’t have information on the forage available to bees in Penzance or Thurso, but I’m sure that gorse is present in both locations. The great thing about gorse is that it flowers all year, or – more accurately – individual, genetically distinct, plants can be found every month of the year in flower.

Based upon the temperature it’s possible that Penzance bees could forage on gorse in midwinter and so be bringing fresh pollen into the hive for brood rearing.

The gorse is in flower … somewhere under there

However, further north, gorse might be flowering but conditions may well not be conducive for foraging.

Inevitably, warmer temperatures will extend the range of forage types available, so increasing the time during the year in which brood rearing can occur 10.

In reality, at temperatures below 12-14°C bees start to cluster 11 and bees chilled to 10°C cannot fly. It’s unlikely much foraging could be achieved at the 8°C used in the examples above 12.

The point is that different latitudes differ greatly in their temperature, and hence the forage that grows, the time it yields nectar and pollen, and the ability of the bees to access it.

Brood rearing

The availability of forage has a fundamental impact on the ability of the colony to rear large amounts of new brood.

It’s not until foraging starts in earnest that brood rearing can really ramp up.

Similarly, low temperatures in autumn, reduce the availability of nectars and ability of bees to forage, so curtailing brood rearing 13.

And the ability to effectively treat mites in the winter is largely determined by the presence or absence of sealed brood. If there is sealed brood in the colony there will also be mites gorging themselves on the capped pupae. These mites are untouched by the ‘usual’ winter miticide, oxalic acid.

Therefore, effective midwinter mite management should be much easier in Thurso than Penzance.

I’ve not kept bees in either of those locations, but I know my bees in Fife (56°N) are reliably broodless at some point between late October and mid-December. Varroa management is therefore relatively straightforward, and Varroa levels are under control throughout the season.

In contrast, when I kept bees in Warwickshire (52°N) there were some winters when brood was always present, and Varroa control was consequently more difficult. Ineffective control in the winter results in higher levels of mites earlier in the season.

Brood rearing models

To emphasise the differences here are two images generated from Randy Oliver’s online Varroa Model, just showing the amounts of brood in all stages and adult bees 14. The overall colony sizes and amount of brood reared are about the same, but the ‘hard winter’ colony (no foraging for five months) is broodless for a much greater period.

The brood and bee population in hives that experience ‘default’ and ‘hard’ winters

Without knowing something about the latitude and/or the likelihood of there being capped brood present in the hive, it’s impossible to give really meaningful answers to questions about winter mite treatment.

This also has a bearing on when you conduct your first inspections of the season.

It is also relevant when comparing what other beekeepers are discussing on social media – e.g. those ’8 frames of brood’ I mentioned last week. If it’s early April and they’re in Penzance (or Perigord) then it might be understandable, but if you’re in Thurso don’t feel pressurised into checking your own colonies as it may well be too early to determine anything meaningful.

Year on year variation

But it’s now approaching late April and most beekeepers will be starting to think/worry about swarm control.

When should you start swarm prevention and, once that fails, when must you apply swarm control?

Or, if you’d prefer to take a more upbeat view of things, when might you expect your bait hives to be successful and when should you start queen rearing?

Again, like almost everything to do with beekeeping, dates are pretty meaningless as your colonies are not basing their expansion and swarm preparations on the calendar.

They are responding to the environmental conditions in your particular locality and in that particular year.

Which brings me to year on year variation.

Not every year is the same.

Some seasons are warmer than others – the spring might be ‘early’ or there might be an ‘Indian summer’. In these instances foraging and brood rearing are likely to start earlier or finish later.

One way to view these differences is to look at the Met Office climate anomaly maps. These show how different the climate – temperature, rainfall, sunshine etc. – can be from year to year when compared to a 30 year average.

Met Office anomaly charts – spring temperatures 2020 and 2021 (compared to 30 year averages)

Here are the anomaly maps for the last two springs. For almost all of the country 2020 was unusually warm. Penzance was 1.5°C warmer than the 30 year average. In contrast, over much of the country, 2021 was cooler than the 1990-2010 average.

So when considering how the colony is developing it’s important to consider the local conditions.

Those Met Office charts are retrospective … for example, you cannot see how this spring compares with previous years (at least, not yet 15.).

Rainfall

And, while we’re on the subject of anomalies … here are the rainfall charts for the summers of 2012 and 2021.

Met Office anomaly charts – summer rainfall 2012 and 2021 (compared to 30 year averages)

I suspect that both were rather poor years for honey. 2012 was – with the exception of Thurso! – exceedingly wet. My records for that year don’t include honey yield 16.

Last year was generally dry, and very dry in the north and west 17. Since a good nectar flow often needs moisture in the soil it may have been poor for many beekeepers.

It was my first full season on the west coast and the heather honey yield was disappointing (but it’s not a great heather area and I’ve nothing to compare it with … perhaps I’ll be disappointed every year?). However, I managed a record summer honey crop in Fife from a reduced number of hives. Quite a bit of this was from lime which I always think of as needing rain to get a good flow from, so perhaps the little rain we did have was at the right time.

Local weather and longitude

If you really want to know what the weather has been doing in your area you probably need something more fine-grained and detailed than a Met Office chart. There are very large numbers of ‘personal weather stations’, many of which share the data they generate with websites such as windy.com or wunderground.com.

Find one by searching these sites and you’ll be able to access recent and historical weather data to help you determine whether colony build up is slow because it’s been colder and wetter than usual. Or – if the conditions have been ideal (or at least normal) but the colony is struggling – whether the queen is failing, if there’s too much competition for forage in the neighbourhood, or if there might be disease issues.

Of course, judgements like these mean you need to have good records year on year, so you know what to expect.

My main apiary on the west coast has it’s own weather station.

Weather station and a typical west coast sky

To emphasise the local influence of prevailing winds and warm sea currents it’s interesting to note that my west and east coast apiaries – which are at almost the same latitude 18 – experience significantly different amounts of rainfall.

We had >270 mm of rain in November 2021 on the west coast, compared to ~55 mm on the east. In July 2021 the figures were 43 mm and 7 mm respectively.

All of which I think makes a good argument for rearing local bees that are better adapted to the local conditions 19. That’s something I’ve discussed previously and will expand upon further another time.

Phenology

Rainfall charts and meteorological tables are all a bit dull.

An additional way a beekeeper can observe the progression of the season, and judge whether the colony is likely to be developing as expected, or a bit ahead or a bit behind, is to keep a record of other environmental events.

This is phenology, meaning ‘the timing of periodic biological phenomena in relation to climatic conditions’.

  • Are frogs spawning earlier than normal?
  • When did the first snowdrops/crocus/willow flower?
  • Are the arrival dates of migrant birds earlier or later than normal?

I’m poor at identifying plants 20 so tend to focus on the animals. The locals – frogs, slow worms, toads, bats, butterflies, dragonflies – are all influenced by local conditions. Many don’t make an appearance until well into the beekeeping season.

Frogspawn

Or perhaps I just don’t notice them?

In contrast, the avian spring migrants appear in March and April. These provide a good indication of whether the spring is ‘early’ or ‘late’.

For example, cuckoo arrived here in 2020 (a warm spring) on the 18th of April. In 2021, a cold spring, they didn’t make an appearance until the 24th.

This year, despite January to March being warmer than average, they have yet to arrive. The majority of GPS-tagged birds are still en route, having been held up by a cold start to April 21, though some have just 22 arrived in southern Scotland.

Wheatear are also several days later this year than the last couple of seasons, again suggesting that the recent cold snap has held things back.

You can read more about arrival dates of spring migrants on the BTO website.

Beekeeping is not just bees

Much of the above might not appear to be much to do with beekeeping.

But, at least indirectly, it is.

Your bees live and work in a small patch of the environment no more than 6 miles in diameter. That’s a very small area (less than 30 square miles). The local climate they experience will determine when they can forage, and what they can forage on. In turn, this influences the timing of the onset of brood rearing in the spring (or late winter), the speed with which the colony builds up, the time at which winter bees start to be reared and the duration of the winter when it’s either too cold to forage or there’s nothing to forage on (or both).

As a beekeeper you need to understand these events when you inspect (and judge the development of) your colonies. Over time, with either a good memory or reasonable hive records, you can make meaningful comparisons with previous seasons.

If your colony had ’8 frames of brood’ in mid-April 2020 (a warm year) and your records showed they swarmed on the 27th, then you are forewarned if things look similar this season.

Conversely, if spring 2020 and this year are broadly similar (and supported by your comprehensive phenological records 23 ) but your bees have just two frames of brood then something is amiss.

Of course, the very best way to determine the state of the colony is to inspect it carefully. Understanding the environmental conditions helps you know what to expect when you inspect.


 

Acting on Impulse

Men just can’t help acting on Impulse … 

This was the advertising strapline that accompanied the 1982 introduction of a new ‘body mist’ perfume by Fabergé. It was accompanied by a rather cheesy 1 set of TV commercials with surprised looking (presumably fragrant) women being accosted by strange men proffering bouquets of flowers 2.

Men just can’t help acting on Impulse …

And, it turns out that women – or, more specifically, female worker honey bees – also act on impulse

In this case, these are the ‘impulses’ that result in the production of queen cells in the colony.

Understanding these impulses, and how they can be exploited for queen rearing or colony expansion (or, conversely, colony control), is a very important component of beekeeping.

The definition of the word impulse is an ‘incitement or stimulus to action’.

The action, as far as our bees are concerned, is the development of queen cells in the colony.

If we understand what factors stimulate the production of queen cells we can either mitigate those factors – so reducing the impulse and delaying queen cell production (and if you’re thinking ‘swarm prevention‘ here you’re on the right lines) – or exploit them to induce the production of queen cells for requeening or making increase.

But first, what are the impulses?

There are three impulses that result in the production of queen cells – supersedure, swarm and emergency.

Under natural conditions i.e. without pesky meddling by beekeepers, colonies usually produce queen cells under the supersedure or swarm impulse.

The three impulses are:

  1. supersedure – in which the colony rears a new queen to eventually replace the current queen in situ
  2. swarm – during colony reproduction (swarming) a number of queen cells are produced. In due course the current queen leaves heading a prime swarm. Eventually a newly emerged virgin queen remains to get mated and head the original colony. In between these events a number of swarms may also leave headed by virgin queens (so-called afterswarms or casts).
  3. emergency – if the queen is lost or damaged and the colony rendered queenless, the colony rears new queens under the emergency impulse.

Many beekeepers, and several books, state that you can determine the type of impulse that induced queen cell production by the number, appearance and location of the queen cells.

And, if you can do this, you’ll know what to do with the colony simply by judging the queen cells.

If only it were that simple

Wouldn’t it be easy?

One or two queen cells in the middle of frame in the centre of the brood nest? Definitely supersedure. Leave the colony alone and the old queen will be gently replaced over the next few weeks. Brood production will continue uninterrupted and the colony will stay together and remain productive.

A dozen or more sealed queen cells along the bottom edge of a frame? The colony is definitely  in swarm mode and – since the cells are already capped – has actually already swarmed. Time to thin out the cells and leave just one to ensure no casts are also lost.

But it isn’t that simple 🙁

Bees haven’t read the textbooks so don’t necessarily behave as expected.

I’ve found single open queen cells in the middle of a central frame, assumed it was supersedure, left the colony alone and lost a swarm from the hive a few days later 🙁

D’oh!

Or I’ve found loads of capped queen cells on the edges of multiple frames in a hive, assumed that I’d missed a swarm … only to subsequently find the original marked queen calmly laying eggs as I split the brood box up to make several nucleus colonies  🙂

Not all queen cells are ‘born’ equal

It’s worth considering what queen cells are … and what they are not. And how queen cells are started.

There are essentially two ways in which queen cells are started.

They are either built from the outset as vertically oriented cells into which the queen lays an egg, or they start their life as horizontally oriented 3 worker cells which, should the need arise, are re-engineered to face vertically.

Play cup or queen cell?

Play cup or are they planning their escape …?

Queen cells started under the supersedure or swarming impulse are initially created as ‘play cups‘. A play cup looks like a small wax version of an acorn cup – the woody cup-like structure that holds the acorn nut. In the picture above the play cup is located on the lower edge of a brood frame, but they are also often found ‘centre stage‘ in the middle of the frame.

Play cups

A colony will often produce many play cups and their presence is nothing to be concerned about. In fact, I think it’s often a rather encouraging sign that the colony is sufficiently strong and healthy that it might be thinking of raising a new queen. 

Before we leave play cups and consider how emergency queen cells start life it’s worth emphasising the differences between play cups and queen cells.

Play cups are not the same as queen cells

Until a play cup is occupied by an egg it is not a queen cell.

At least it’s not as far as I’m concerned 😉

And, even if it contains an egg there’s no guarantee it will be supported by the workers to develop into a new queen 4.

However, once the cell contains a larva and it is being fed by the nurse bees – evidenced by the larva sitting in an increasingly thick bed of royal jelly – then it is indisputably a queen cell.

Charged queen cell ...

Charged queen cell …

And to emphasise the fundamental importance in terms of colony management I usually refer to this type of queen cell as a ‘charged queen cell’.

Once charged queen cells appear in the colony, all other things being equal, they will be maintained by the workers, capped and – on the 16th day after the egg was laid – will emerge as a new queen.

And it is once charged queen cells are found in the colony that swarm control should be considered 5.

But let’s complete our description of the queen cells by considering those that are produced in response to the emergency impulse.

Emergency queen cells

Queen cells produced under the emergency impulse differ from those made under the swarm or supersedure impulse. These are the cells that are produced when the colony is – for whatever reason – suddenly made queenless. 

Without hamfisted beekeeping it’s difficult to imagine or contrive a scenario under which this would occur naturally 6, but let’s not worry about that for the moment 7

The point is that, should a colony become queenless, the workers in the colony can select one or more young larvae already present in worker cells and rear them as new queens.

So, although the eggs are (obviously!) laid by the queen 8, they have been laid in a normal worker cell. To ensure that they get lavished with attention by the nurse bees, feeding them a diet enriched in Royal Jelly, the cell must be re-engineered to project vertically downwards.

Location, location

Queen cells can occur anywhere in the hive to which the queen has access.

Queen cell on excluder

Queen cell on underside of the excluder …

But they are most usually found on the periphery of the frame, either along the lower edge …

Queen cells ...

Queen cells …

… or a vertical side edge of the frame …

Sealed queen cells

… but they can also be found slap, bang in the middle of a brood frame.

Single queen cell in the centre of a frame

And remember that bees have a remarkable ability to hide queen cells in inaccessible nooks and crannies on the frame … and that finding any queen cells is much more difficult when the frame is covered with a wriggling mass of worker bees.

Location and impulses

Does the location tell us anything about the impulse under which the bees generated the queen cell?

Probably not, or at least not reliably enough that additional checks aren’t also needed 🙁

Many descriptions will state that a small number (typically 1-3) of queen cells occupying the centre of a frame are probably supersedure cells. 

Whilst this is undoubtedly sometimes or even often true, it is not invariably the case.

The workers choose which larvae to rear as queens under the emergency impulse. If the only larvae of a suitable age are situated mid-frame then those are the ones they will choose.

In addition, since generating emergency cells requires re-engineering worker cells, newer comb is likely more easily manipulated by the workers.

Some beekeepers ‘notch’ comb under suitably aged larvae to induce queen cell production at particular sites on the frame 9. The photograph shows a frame of eggs with a notch created with the hive tool. It’s better to place the notch underneath suitably aged larvae, not eggs. Clearly, the age of the larvae is more critical than the ease with which the comb can be reworked. Those who use this method [PDF] properly/extensively claim up to a 70% ‘success’ rate in inducing queen cell placement on the frame. This can be very useful if the plan is to cut the – well separated – queen cells out and use them in mating nucs or for requeening other colonies.

Eggs in new comb ...

Eggs in new comb …

Comb at the bottom or side edges of the frame often has space adjacent and underneath it. Therefore the bees might favour these over sites mid-frame (assuming ample suitable aged larvae) simply because the comb is easier to re-work in these locations.

And don’t forget … under the emergency impulse the colony preferentially chooses the rarest patrilines to rear as new queens 10.

Not all larvae are equal, at least when rearing queens under an emergency impulse.

Active queen rearing and the three impulses

By ‘active’ queen rearing I mean one of the hundreds of methods in which the beekeeper is actively involved in selecting the larvae from which a batch of new queens are reared.

This doesn’t necessarily mean grafting , towering cell builders and serried rows of Apidea mini nucs.

It could be as simple as taking a queen out of a good colony to create a small nuc and then letting the original colony generate a number of queen cells.

Almost all queen rearing methods use either the emergency or supersedure impulses to induce new queen cell production 11.

For example, let’s consider the situation described above.

Active queen rearing and the emergency impulse

A strong colony with desirable traits (calm, productive, prolific … choose any three 😉 ) is made queenless by removing the queen on a frame of emerging brood into a 5 frame nucleus hive. With a frame of stores and a little TLC 12 the queen will continue to lay and the nuc colony will expand.

Everynuc

Everynuc …

But the, now queenless, hive will – under the emergency impulse – generate a number of new queen cells. These will probably be distributed on several frames if the queen was laying well before she was removed.

The colony will select larvae less than ~36 hours old (i.e. less than 5 days since the egg was laid) for feeding up as new queens.

If the beekeeper returns to the hive 8-9 days later it can be split into several 5 frame nucs, each containing a suitable queen cell and sufficient emerging and adherent bees to maintain the newly created nucleus colony 13.

Active queen rearing and the supersedure impulse

In contrast, queenright queen rearing methods such as the Ben Harden system exploit the supersedure impulse.

Queen rearing using the Ben Harden system

In this method suitably aged larvae are offered to the colony above the queen excluder. With reduced levels of queen pheromones present – due to the physical distance and the fact that queen cannot leave a trail of her footprint pheromone across the combs above the QE – the larvae are consequently raised under the supersedure impulse.

Capped queen cells

Capped queen cells produced using the Ben Harden queenright queen rearing system

I’m always (pleasantly) surprised this works so well. Queen cells can be produced just a few inches away from a brood box containing a laying queen, with the workers able to move freely through the queen excluder. 

Combining impulses …

Finally, methods that use Cloake or Morris boards 14 use a combination of the emergency and supersedure impulses.

Cloake board ...

Cloake board …

In these methods the colony is rendered transiently queenless to start new queen cells. About 24 hours later the queenright status is restored so that cells are ‘finished’ under the supersedure response.

The odd one out, as it’s not really practical to use it for active queen rearing, is the swarming impulse. Presumably this is because the conditions used to induce swarming are inevitably rather difficult to control. Active queen rearing is all about control. You generally want to determine the source of the larvae used and the timing with which the queen cells become available.

Environmental conditions can also influence colonies on the brink of swarming … literally a case of rain stopping play.

Acting on impulse

If there are play cups in the colony then you don’t need to take any action 15, but if there are charged queen cells present then your bees are trying to tell you something.

Precisely what they’re trying to tell you depends upon the number and position of the queen cells, the state or appearance of those cells, and the state of the colony – whether queenright or not.

What you cannot do 16 is decide what action to take based solely on the number, appearance or position of the queen cells you find in the colony. 

Is the colony queenright?

Are there eggs present in the comb?

Does the colony appear depleted of bees?

If there are lots of sealed queen cells, no eggs, no sign of the queen and a depleted number of foragers then the colony has probably swarmed. 

Frankly, this is pretty obvious, though it’s surprising the number of beekeepers who cannot determine whether their colony has swarmed or not.

But other situations are less clear … 

If there are a small number of charged queen cells, eggs, a queen and a good number of bees in the hive then it might be supersedure.

Or the colony might swarm on the day the first cell is sealed 🙁

How do you distinguish between these two situations? 

Is it mid-May or mid-September? Swarming is more likely earlier in the season, whilst supersedure generally occurs later in the season.

But not always 😉

Is the queen ‘slimmed down’ and laying at a reduced rate?

Much trickier to determine … but if she is then they are likely to swarm.

Decisions, decisions 😉 … and going by the number of visits to my previous post entitled Queen cells … don’t panic! there are lots of beekeepers trying to make these decisions right now 🙂


 

Swarm control and elusive queens

Many beekeepers struggle to routinely find the queen, particularly in a very busy colony.

For 90% of the beekeeping season whether you find the queen or not is irrelevant … you can tell if she’s present because there are eggs in the colony (so she must have laid them in the last 3 days) and, often, because the colony is well-tempered.

That should be sufficient.

Whenever I do routine inspections I like to see the queen, but I don’t look for her. If the colony:

  1. is calm and well-behaved
  2. is bringing pollen in
  3. contains no sealed queen cells, and
  4. contains eggs

then I’m 99% certain there is a queen present and everything is OK 1.

Individually, each of those observations isn’t a certain way of determining the queen status of the colony, but together they’re pretty-much a nailed-on certainty.

Not finding the queen

Notwithstanding the surety these four signs provide about the presence of the queen, they still don’t help you (or me 😉 ) find her.

And, for a few colony manipulations, it’s really helpful to find the queen. Indeed, for some it is essential.

I’m not going to discuss ways to help find the queen as I’ve written about it before and refer you there for starters.

The two obvious times it helps to know exactly where the queen are:

  • when you are removing frames, brood and bees from the colony – for example, when making up nucleus colonies
  • during swarm control

Frankly, you probably shouldn’t be doing the first of these if you don’t know where the queen is. There’s a real risk of leaving the parental colony queenless, which is probably not your intention.

Swarm control

The post today is going to deal with the second situation. How do you conduct swarm control when you don’t have a Scooby 2 where the queen is in the colony?

Swarm control is the term used to describe the colony manipulations that a beekeeper conducts to prevent the loss of a swarm. It is usually started after attempts at swarm prevention (e.g. supering early to provide more space) have clearly not worked.

You can tell the swarm prevention has not worked because the colony has started to produce queen cells … don’t panic.

This seemed like a logical post for this time of the season … and for another Covid-blighted spring. Beginners who started last year, or who will be getting their first bees this year, might well have to conduct swarm control without the benefit of a mentor.

And it’s beginners who are most likely to be unable to find the queen in an overflowing colony. These of course are the colonies that are most likely to swarm and – because of their ability to collect lots of honey – the very colonies you want not to swarm 😉

Swarm control when you can find the queen

All of the methods of swarm control I’ve previously discussed here have involved hive manipulations that require the location of the queen to be known:

  • The Pagden artificial swarm – the queen is left in the original location and is joined by all the flying bees. The brood and hive bees end up rearing a new queen.
  • The vertical split – the same as the Pagden artificial swarm, except conducted vertically rather than horizontally. Uses less equipment and more muscle.
  • The nucleus method – a nuc colony is established with the queen, some bees and brood. The parental colony is left to rear a new queen. Very reliable in my experience.

If you’re the type of beekeeper who can routinely find the queen, relatively quickly, however crowded or bad tempered the colony is, however short of time …

… in a downpour.

Congratulations. Apply here. No need to read any further 😉

But, for the rest of us …

Queens and bees

If you think about the contents of a colony it can be divided into three components:

  1. Queen
  2. Brood in all stages (eggs, larvae, pupae; abbreviated to BIAS) and the nurse or ‘hive’ bees
  3. Flying bees – the foraging workforce

Of these, only one is a ‘viable’ entity on its own.

The queen needs bees to feed her, build comb and rear the larvae that hatch from the eggs she lays. The foragers need a queen to lay eggs. Neither alone is viable, by which I mean ‘has the ability to develop into a full colony’.

In contrast, the combination of nurse bees and brood, in particular the eggs and very young larvae, does have the potential to create a complete colony.

I’ve discussed this concept before under the title Superorganism potential.

Swarms, splits and superorganisms

Swarms, splits and superorganisms

Although neither the queen or flying bees alone have any long-term potential to create a new colony, together they can.

Both the Pagden and vertical split exploit this potential by separating the queen and flying bees from ‘all the rest’. It’s similar, but not identical to what happens when a colony swarms 3.

Loads of bees … and there’s a queen in there somewhere!

The method described below is a slight modification of the Pagden artificial swarm.

It exploits the fact that the flying bees return to their original location with unerring accuracy 4.

It couples this with the ‘Get out of jail free’ ability of bees to rear a new queen from eggs or very young larvae if they are queenless.

Together they make swarm control straightforward when you can’t find or don’t know where the queen is.

Or when you don’t have the time or patience or enthusiasm to find her 😉

So, let’s move from generalities to specifics …

During a routine inspection of a colony in late May 5 you find unsealed queen cells. The colony is strong and you’ve not seen the queen for weeks. Or ever. She’s not marked or clipped. There are eggs, larvae and sealed brood in abundance.

Stage 1 – preparation

  1. Check the colony again for any sealed queen cells. If you find any you should assume that the colony has probably already swarmed 6. If there are no sealed queen cells continue …
  2. Beg, borrow or steal a new floor, brood box, crownboard and roof. While you’re at it, scrounge or build 11 new frames. Of course, I expect all readers of this site are better prepared than me that. You will have spares close to hand – in the apiary shed, or the back of the beemobile, or you can quickly disassemble a nearby bait hive. Congratulations … I hope you’re feeling very smug 😉
  3. Move the soon-to-swarm colony (which I’ll term the old colony in the old hive from now on) away from its original location. Most advice suggests more than a metre. I prefer to move the old hive further away (e.g. to the other side of the apiary). You want to ensure that bees flying from the old hive relocate to the new hive. If you’re short of space at all it helps to rotate the old hive entrance to face in a different direction.
  4. Place the new floor and new brood box in the original location. Make sure the entrance faces the same way as it did when the old hive was in the original location.

You’ll notice that returning foragers will start to enter the new hive almost as soon as you place the floor and brood box in place.

Stage 1 – provision the new hive with eggs and larvae

  1. Remove the roof, crownboard, supers and queen excluder from the old hive and place them gently aside.
  2. Transfer one frame containing eggs and young larvae from the old hive to the new hive.
  3. It is imperative that the selected frame has no queen cells on it. Carefully inspect the frame for queen cells. If you find any, knock them off using your hive tool or fingers. The ability to judge which of the two hives contains the queen at the next inspection is dependent upon there being no queen cells at this stage.
  4. Place the selected frame in the middle of the new hive.
  5. Fill the remainder of the new hive with new frames.
  6. Add the queen excluder to the new hive 7.
  7. Add the supers to the new hive. Close the new hive by adding a crownboard and roof. See the note below about feeding this colony.
  8. Add a new frame to the gap now present in the old hive 8. Replace the crownboard and roof.
  9. Go and make a cup of tea … all done for today.

    Swarm control when you cannot find the queen – stage 1

I’ve assumed that the colony you are manipulating has supers present. If it did not, and particularly if there’s no nectar flow, you will need to feed the colony in the new hive. This ensures that the bees can build comb … which they’ll need to do if the queen is present.

You now leave the colonies for 7 days and then check them again to determine which contained the queen …

Stage 2 – 7 days later – the new hive

Inspect the new hive and look for queen cells on the frame you transferred from the old hive in stage 1(ii) (above). This hive will be much busier now as all of the flying bees from the old hive will have relocated to it

The new hive contains no queen cells

If there are no queen cells on the brood frame you introduced it is almost certain that the queen is in the new hive (see upper panel A in the diagram below). Look carefully on the frames of adjacent drawn comb for the presence of eggs. If so, you can be certain that the queen is in the new hive. Close the hive and let them get on with things.

The new hive does contain queen cells

If there are queen cells on the frame you transferred from the old hive then the queen is almost certainly not in the new hive (see lower panel B in the diagram below).

Because they are queenless and you provided them with a frame containing eggs and very young larvae they have started to produce a new queen … or queens.

Honey bee development

Honey bee development

You want to make sure they only produce one new queen.

There will be no more eggs or larvae young enough to start more queen cells. Many of the queen cells will be capped.

Ideally, select an unsealed queen cell that contains a big fat larva sitting in a deep bed of Royal jelly (a ‘charged’ cell). Mark the top of the frame with a pin (if you’re organised) or pen (if you’re less organised) or a hive tool (if you’re me 😉 ). Knock off all the capped cells, just leaving the one you have marked.

Be gentle with this frame. Don’t shake it, don’t drop it etc.

Swarm control when you cannot find the queen – 7 days later

Close the hive up and let the queen emerge and mate and start laying. This will take at least 17 days or so, and often longer.

Stage 2 – 7 days later – the old hive

Inspect the old hive and look for queen cells. This hive will be much less busy as most of the flying bees will have been ‘bled off’ returning to their original location (and boosting the population in the new hive).

The old hive contains no queen cells

With a much reduced population of workers – and if the queen is present – the bees will no longer need the queen cells, so will almost certainly have torn them down and destroyed them (see lower panel B in the diagram above).

If you carefully look through this hive you should find eggs and very young larvae present. These ‘prove’ that there is a queen present, even if you still cannot find her. Where else could the eggs have come from?

Close the hive up and let them get on with things.

The old hive does contain queen cells

Despite the reduced worker population, if this hive does not contain the queen the bees will be busy rearing a replacement … or three.

There will be no more eggs or larvae young enough to start more queen cells. Many of the queen cells will be capped.

Ideally, select an unsealed queen cell. Mark the top of the frame with a pin 9. Knock off all the capped cells, just leaving the one you have marked.

The goal is the leave one charged queen cell only.

If all the cells are capped don’t worry. The bees are very unlikely to have chosen a ‘dud’. Choose a nice looking cell somewhere near the centre of the brood nest and destroy the others.

She’s gone …

Make a note in your diary/notebook and expect to wait 17-21 days until this queen is out and mated and laying (or possibly a bit longer). Other than perhaps checking the new queen has emerged there’s no need to disturb the colony in the meantime (and lots to be lost if you do interfere and disturb the virgin queen).

It’s as simple as that … what could possibly go wrong?

I’ve very rarely had to implement swarm control when I can’t find the queen. Usually I’ll just look a bit harder and find her eventually.

However, there are times when knowing what you need to do if you really cannot find her – because the hive is full of uncapped swarm cells and it’s raining hard, or the bees are going postal and you want to be anywhere but in this apiary next to the open hive – is very useful.

Are there any embellishments that might be worth considering?

If the old hive has very little comb with eggs and young larvae you need to ensure that both the old and the new hives have sufficient to draw new queen cells. This is rarely a problem, but be aware that this method only works if both old and new hives have the resources to rear a new queen should they need to.

On the contrary, if there’s ample eggs/larvae you could transfer a couple of frames to the new hive … remembering that there’s also then an increased chance you will also be transferring the elusive queen.

If the old hive is left with ample eggs and larvae you can safely knock back all the queen cells during stage 1. They will only then produce new cells if the queen is not present. This makes deciphering what’s going on at 7 days that much easier.

When I say 7 days, I mean 7 days … not 9, or when it stops raining or when you’ve got some spare time in the future 😉

A queen in a cell capped on the day you complete stage 1 will emerge 9 days later. On the off chance that the bees are queenright but do not tear the unwanted cells down you want to avoid this happening.

Finally, if there’s a dearth of nectar and no filled/partially filled supers on the colonies, you may need to feed them to avoid starvation.

Keep a close eye on them, but don’t interfere unless you have to.


 

Long distance beekeeping

This post was originally entitled ‘lockdown beekeeping’. I changed it in the hope that, at some point in the future, we’ve all forgotten lockdown and are back to the ‘old normal‘. Instead, long distance beekeeping, better summarises the topic and might rank better in future Google searches …

But before I start, here’s some general advice …

Don’t do as I do, do as I say (elsewhere on this site 😉 )

I don’t think what I’m going to describe below was anything like ideal. In the end it worked out pretty well, but probably as much from luck as judgement. I’d do it again if I had to, but I’d prefer not to. I don’t think it is a workable solution for effective beekeeping in anything other than exceptional circumstances.

But 2020 has been an exceptional circumstance …

Mid-March madness

It was abundantly clear in very early March that a lockdown was inevitable 1 to restrict the spread of Covid-19. All the numbers were going in the wrong direction and other countries were already imposing quite draconian restrictions to control virus transmission 2.

I had speaking engagements with Oban & District BKA on the 12th and at the SNHBS event at Kinross on the 14th and, on the following day, I disappeared to my bolthole on the remote west coast of Scotland. 

The wild west

I decided to simply abandon the bees in Fife for at least a month while the country came to terms with movement restrictions, supermarket food deliveries, protecting the NHS and ‘working from home’.

On the day I left I checked that colonies were not too light, that the entrances were clear and that the roofs were secure and everything was strapped down.

March is too early to do anything with bees in Fife and my first inspections are usually not until mid/late April in a normal year, and even early May if there’s been a cold Spring. I therefore had a month to plan for the season ahead, with the expectation that I would have to manage the bees with the minimum possible number of visits for the next few months.

Planning

The beekeeping season contains a number of ‘moveable fixtures’.

By that I mean that certain things happen every season, but the time when they happen is not fixed. The timing depends upon the weather which, in turn, influences forage availability. It depends upon the strength of the colony, the location of the apiary and – for all I know – the phase of the moon.

Warm springs can lead to swarming by the end of April. Conversely, cold springs delay events. Dry summers generally put paid to the lime nectar and a protracted June gap can leave colonies starving in the middle of the season.

In the previous post I called these moveable fixtures the unknown knowns.

The variable timing of these moveable fixtures influences colony management by the beekeeper; this includes the spring honey harvest, swarm control and the summer honey harvest. In addition, it includes more mundane things like comb exchange, feeding the colony up for winter and Varroa management.

Bees and beekeeping are influenced by the environment, not the calendar 3.

The UK government imposed a nationwide lockdown on the 23rd of March 2020. Movement restrictions were imposed, including the distance you could travel from where you live.

Exemptions were made for allowed activities and, after lobbying from national associations and others, beekeeping was included as an exempt activity. Notwithstanding this, it was not going to be practical to conduct the usual weekly inspections from April until late July.

First inspections

I returned to Fife to conduct the first inspections in the third week of April. The spring was well advanced and the strong colonies were really booming. The overwintered nucs had built loads of brace comb in the space over the top bars and urgently needed to be moved to a full hive.

Overwintered nuc with brace comb

There were about 20 colonies spread between my two main apiaries. All were checked for space/strength, temper and the presence of a laying, marked and clipped queen 4. I didn’t have time to mollycoddle any weak colonies so these (having checked they were healthy) were united with nearby strong colonies.

Safely back in the hive

In addition, I didn’t have the luxury of time to see if poorly behaved colonies might pick up later in the season. To be frank, I had more colonies than I needed (or could easily cope with). With the need for swarm control looming, I decided to reduce colony numbers by uniting de-queened aggressive colonies with others in the same apiary. There were only a couple of these (identified the previous season and seemingly unimproved after the winter) … but every little bit helps.

United colonies, three supers, strapped up well … 25th April 2020

Finally, with the oil seed rape about to flower, I added three supers to the majority of the colonies. In a normal season these would have been added incrementally as needed. This year I had to assume (or hope) they might need them.

Swarm control

On my return to the west coast the spring was warming up. The primroses were looking fantastic and we had several weeks of outstanding weather.

Primroses – late April 2020

I enjoyed the good weather and spent the time fretting about the timing of swarm control.

My colonies tend to make swarm preparations between mid-May and the first week of June – a good example of a moveable fixture.

A priority this year was not to lose any swarms.

I did not want to inconvenience other beekeepers (or civilians’ 5) with swarms I managed to lose by ineptly doing my beekeeping from the other side of the country.

With most people trying to keep themselves isolated, 30,000 bees moving into a chimney would be a lot more than unwelcome.

Even in a normal year I do my very best not to lose swarms, and this was anything but a normal year.

I therefore decided to conduct pre-emptive swarm control on every colony in the third week of May. ‘Pre-emptive’ meaning that, whether the colonies showed any signs of swarming or not, I’d remove the queen and let them rear another.

Colonies do not swarm every year. Every now and again a strong colony of mine will show no inclination to swarm. These are great … I just pile another super or two on top and am thankful not to have to intervene.

However, strong colonies are more than likely to swarm and I didn’t feel I had the luxury of waiting around to find which wanted to and which didn’t.

A swarm in May (and how I avoided it … )

With the exception of a couple of our research colonies that seemed to be on a ‘go slow’ I treated all my colonies in the same way.

I used the nucleus method of swarm control. I removed the queen and one frame of emerging brood and put them into a 5 frame nuc box with a frame of foundation or drawn comb and a frame of stores. To ensure there were sufficient bees in the box I then shook in another frame of bees before sealing them up for transport.

All the nucs were moved to distant apiaries so there was no risk of bee numbers being depleted as they returned to the original hive.

And then there were three … nucs for pre-emptive swarm control

The parental colonies were left for 6 days and then checked for queen cells.

Ideally this should have been 7 days. By this time there would be no larvae young enough to generate additional queen cells from. However, there was a large storm moving in from the west and it was clear that there would be no possibility of doing any beekeeping while it moved through.

I therefore checked on the sixth day, knocked back all the queen cells, leaving just one good one, and then scarpered back to the west coast (meeting the storm en route).

However, before I disappeared I also checked all the nucs. All were doing fine. There was a good nectar flow and they had already drawn and laid up the frame out I’d given them. I therefore added two foundationless frames flanking the central frame. With frames either side these are usually drawn straight and true.

New comb with queen already laying it up

If you give the bees lots of foundationless frames together, particularly if the hive isn’t perfectly level, they will often make a real mess of drawing the comb out. By interleaving the new frames with those that were already drawn the bees are forced to maintain the required bee space on either side, so usually draw the frame out satisfactorily.

Getting the timing right … at least partly

When I left Fife on the 22nd of May the OSR was in full flower. It would finish sometime in early June.

My next dilemma was to time the following visit for the spring honey harvest. Too soon and the frames wouldn’t be capped. Too late and, being OSR, it might start to crystallise in the comb.

But I also wanted to deal with all the requeening colonies during the same visit and all of the nucs.

I’ve previously discussed the time it takes for a new queen to develop, emerge, mature, mate and start laying. It always takes longer than you’d like. The absolute minimum time is about two weeks, but it usually takes longer. Ideally I wanted to go through all the requeening colonies, find, mark and clip the queens or re-unite (with the nuc) those that had failed.

At the same time, with a strong nectar flow and a strongly laying queen, there was a real risk that the nucs were going to get overcrowded very fast. The longer they were left, the more chance that they would think about swarming.

I employed a number of local spies (beekeeping friends in the area) and queried them repeatedly 6 about the state of the OSR. Shortly after it finished, I returned to take off the spring honey.

A minor catastrophe

It was the 10th of June; this was exactly 20 days since leaving the requeening colonies with a single freshly-sealed queen cell.

I’ve previously mentioned that one of my apiaries is rather exposed to strong westerlies. Despite the wind-reduction netting and the rapidly growing willow hedge, this apiary had been really hammered by the storm on the 22nd/23rd of May.

Nuked nucs

Two nucs had lost their lids and crownboards and a full strapped-up hive had been blown over, denting the fence on its descent but remaining more or less intact.

How is the queen supposed to find the entrance?

The apiary hadn’t been checked since my last visit, so I’m assuming the damage happened during the storm in late May. That being the case, the nucs would have been open to the elements for about 18 days. Amazingly, both still contained laying queens and – despite looking a little the worse for wear – eventually recovered.

In contrast, the strapped up hive was not ‘open to the elements’. It had fallen entrance-first onto the ground. I think a few bees could fly from a gap where the ground didn’t quite block the entrance, but I was more concerned about getting them upright again to check too carefully.

Despite my best efforts I failed to find a queen in this hive. My frames are arranged ‘warm way’, so all the frames had slid together when the hive fell and it’s possible the queen didn’t survive 7.

Spring honey, nucs and queens

The spring honey harvest went well. The OSR frames were mostly capped. Those that weren’t could still be extracted as the honey would not shake out of the frame.

A fat frame of spring honey

It was my best year for spring honey since returning to Scotland in 2015. With the exception of that one big storm the weather had been pretty good and the bees had had ample opportunity to be out foraging.

However, although a few of the colonies had newly mated and laying queens, the majority did not. In most of them I found evidence that there would be a laying queen sometime soon … I usually infer this from the presence of ‘polished’ cells in the centre of the one or two of the central frames in the hive. This gave me confidence that there was likely to be an unmated, or just mated, queen in the box. There’s nothing much to be gained from actually finding her, so I would have to be a bit more patient.

Just as these things cannot be rushed, an overcrowded nuc cannot be ignored.

Almost all the nucs were fast running out of space. I therefore removed 2-3 frames of brood from each and replaced them with fresh frames. I used the frames of brood to boost the honey production colonies that were ‘busy’ requeening.

Mid-June and the foxgloves are in flower

By the 14th of June I was back on the west coast.

Late June rearrangements

I returned a fortnight later for a very busy couple of days of beekeeping.

By this time the summer nectar flow was starting. The nucs, even those ‘weakened’ by removing brood, were busy filling spaces with brace comb.

Comb in feeder

All of the requeening colonies were checked for a laying queen. A handful had failed, disappeared or whatever and now looked queenless. These were requeened by uniting them with a nuc containing the ‘saved’ queen from earlier in the season.

What could be simpler? That’s one of the main attractions of this method of swarm control.

The colonies with the first of the new laying queens were doing really well, with lovely fresh frames of wall-to-wall brood. It’s only after a queen has laid up a full frame or two that you get a proper impression of her quality. I can never properly judge this in the tiny little frames of a mini-mating nuc, so – despite the extra resources (bees, frames, boxes) needed – prefer to get queens mated and laying in hives with full-sized frames.

Good laying pattern

The remaining ‘unused’ nucs were all expanded up to full hives and given a super. All the strong colonies in the apiaries were again given three supers and left to get on with things.

Expanded nucs on the left, production hives on the right

It was a backbreaking few days, particularly because I spent the evenings jarring honey 8, but it left the apiaries in a good state for the summer nectar flow.

Summer honey

The only beekeeping I did in July was on the west coast of Scotland. I moved a couple of nucs up to full hives and, since the heather wasn’t yet in full flower, I gave them each a gallon or so of thin syrup to encourage the bees to draw comb to give the queen space to lay.

Welcome to your new home … nuc ‘promoted’ to hive with contact feeder in place

I finally returned to Fife to take the summer honey off in late August. I’ve recently posted a brief description of clearing supers during Storm Francis so won’t repeat it here.

In four days I removed all the supers and extracted the honey, fed and treated the bees for the winter, and left the colonies strapped up securely for … goodness knows when.

The summer honey harvest was unusual. One of my apiaries did fantastically well, more than the last two seasons combined, and by far my best year since 2015.

The other apiary was just slightly worse than … utterly pathetic.

This second apiary is usually very reliable. The forage in the area has been dependable and, in some years, the lime has yielded very well. However, not this year and, since I wasn’t about, I don’t know why.

I did it my way … but it wasn’t very satisfying

That last paragraph rather neatly sums up the 2020 beekeeping season.

Overall the season must be considered a success; I didn’t lose any swarms, the majority of colonies were requeened successfully, all of the colonies are going into the winter strong, fed and treated, and the overall honey crop was very good.

However, it’s all been done ‘remotely’, both literally and figuratively. I’ve not felt as though I’ve been able to watch the season and the colonies develop together. I don’t feel as though I was ‘in tune’ with what was happening in the hives. I can’t explain why some things worked well and other things – like the apiary with no honey 🙁 – failed miserably.

My notes are perfunctory at best, “+3 supers, Q laying well”, and contain none of the usual asides about what’s happening in the environment. There’s no indication of what was flowering when, whether the year was ‘early’, ‘late’, or ‘about normal’, when the migrant birds arrived or left.

I’ve done less beekeeping this year than in any year in at least a decade. Since I rather like beekeeping, this means it has been a bit of a disappointment. Since I’ve spent less time with the bees, and I’ve been so rushed when I have been working with them, I feel as though I’ve learnt less this year than normal.

What didn’t get done?

With irregular and infrequent visits some things were simply ignored this season.

I did very little Varroa monitoring. With the Apivar strips now in it’s clear that some hives have higher Varroa counts than I’ve seen in the last few years 9. However, not all of them. Some colonies appear to have extremely low mite loads.

We finally managed to check the levels of deformed wing virus in our research colonies quite late in the season once the labs partially reopened. The levels were reassuringly low. This strongly suggests that the mite levels are not yet at a point threatening the health of the colonies.

I’ve singularly failed to do much in the way of brood comb exchange this season. This means I’m going to have to take a bit more care next year to cycle out the old, dark frames and replace them with brand new ones.

Here’s one I did manage to replace

Again, not the end of the world, but ‘bad beekeeping’ all the same.

As I’m putting the finishing words together for this post the government is re-introducing further curfews and restrictions … maybe next year will be more of the same?