Category Archives: Varroa control

Repeated oxalic acid vaporisation

Synopsis : Does repeated oxalic acid vaporisation of colonies rearing brood work sufficiently well? Is it as useful a strategy as many beekeepers claim?


Oxalic acid is a simple chemical. A dicarboxylic acid that forms a white crystalline solid which dissolves readily in water to form a colourless solution. It was originally extracted from wood-sorrels, plants of the genus Oxalis, hence the name. In addition to the wood-sorrels it is present in a wide range of other plants including rhubarb leaves (0.5% oxalic acid 1 ), the berries and sap of Virginia creeper and some fruits, such as starfruit. Additionally, fungi excrete oxalic acid to increase the availability of soil nutrients.

Oxalic acid is inexpensive to produce by a variety of processes and was possibly the first synthesised natural product. About 120,000 tonnes are produced annually and it is mainly used for bleaching wood (and often sold as ‘wood bleach’) and cleaning products – including teeth. It chelates iron and so is used for rust removal and is used as a dye fixative (or mordant 2 ).

Spot the difference ...

Oxalic acid and API-Bioxal … the same but different

It is also, when used properly, devastatingly effective against the ectoparasitic mite Varroa destructor.

And, even more importantly, when used properly it is extremely well-tolerated by honey bees.


Not so fast …

Unfortunately for beekeepers, some of the commercially available i.e. licensed and approved, oxalic acid-containing treatments either contain unnecessary additives and/or have limitations in their approved modes of administration that reduces their efficiency and use in real world beekeeping situations.

Oxalic acid-containing miticides and their use

A quick search of the UK’s 3 Veterinary Medicines Directorate snappily titled Product Information Database for ‘target species = bees’ and ‘active ingredient = oxalic acid’ yields three products :

  • Varromed (BeeVital GmbH) which is a solution containing formic acid and oxalic acid
  • Oxybee (DANY Bienenwohl GmbH) which is an oxalic acid solution PLUS a separate powder containing essential oils and sugar. As far as I can tell, Oxybee looks to be the same product as Dany’s BienenWohl powder and solution, which – although listed and licensed – I cannot find for sale 4 in the UK
  • API-Bioxal (Chemicals Laif S.P.A) which is purchased as a powder composed of 88% oxalic acid dihydrate together with silica and glucose

I’m going to largely ignore Varromed and Oxybee for the rest of this post. I’m sure they’re perfectly good products but I’ve not used either of them so cannot comment from personal experience.

Keeping your powder dry

More relevant to this post, Oxybee and Varromed are both liquids, and this post is about vaporising (aka sublimating) oxalic acid.

And vaporisation involves using the powdered form of oxalic acid.

Which neatly brings me to the methods of application of oxalic acid-containing treatments to kill mites.

I’m sure there are some weird and wonderful ones, but I’ll be limiting any comments to just three which – from my reading of the instructions – are the only ones approved (and then not for all of the products listed above) : 5

  • Spraying a solution onto the surface of the bee-covered frames
  • Dribbling or trickling a solution onto each seam of bees between the frames
  • Vaporisation or sublimation of powdered oxalic acid by heating it in a metal pan to convert it to a gas. This permeates the hive, settling on all the surfaces – woodwork, comb, bees – and remains active against mites for a period after administration

Broodless is best

Oxalic acid, however it is administered, does not penetrate brood cappings. Therefore all of the approved products are recommended for use when the colony is broodless.

Typically – though not exclusively – this happens in the winter, but the beekeeper can engineer it at other times of the season.

If the colony is broodless you can expect any oxalic acid-containing miticide to reduce the mite population by 90% or more. There are numerous studies that support this level of efficacy and it’s what you should be aiming for to give the colony the best start to the season.

I discussed at length how to determine whether a winter colony is broodless a fortnight ago in Broodless?

This post is a more extensive response to several comments (made to that Broodless? article) that recommended repeated vaporisation of oxalic acid at, either 4, 5 or 7 day intervals.

The idea is that this kills the phoretic mites present when the colony is first treated and the mites subsequently released as brood emerges.

How many repeats?

I’ve seen anything from two to seven recommended online.

I’ll discuss this further below, but I’d note that the very fact that there’s such variation in the recommended repeat treatments – perhaps anything from two, fours days apart to seven at weekly intervals (i.e. spanning anything from 8 days to 49 days) – suggests to me that we don’t know the optimal treatment schedule.

Which is a little weird as, a) Varroa is a globally-distributed problem for beekeepers and is more or less invariant (as is the brood cycle of the host honey bee), and b) repeated treatment regimes have been used for over 20 years.

Which brings me back to a crude comparison of vaporisation vs dribbling, or …

Sublimation vs. trickling

A hive can be sublimated with oxalic acid without opening the hive. The vaporiser alone is introduced through the hive entrance or – in the case of certain models – the vapour is squirted through a hole in the floor, brood box or eke. In contrast, trickling oxalic acid requires the removal of the crownboard.

In the video above I’m using a Sublimox vaporiser. The hive entrance is sealed with foam and the open mesh floor is covered with a tightly fitting slide-in tray. As you can see, very little vapour escapes.

Although oxalic acid is well tolerated by bees, and it has no effect upon sealed brood, a solution of oxalic acid is detrimental to open brood. Therefore, trickled oxalic acid weakens the colony – because the acidity kills some or all of the open brood – and repeated trickling of oxalic acid is likely to compound this (see Al Toufailia et al., 2015). In contrast, repeated oxalic acid vaporisations appear not to be detrimental to the colony (caveat … I’m not aware of any long-term studies of this, or for the impact on the queen).

API-Bioxal approved methods of administration

The instructions for API-Bioxal clearly state that only a single treatment by vaporisation is approved per year. The exact wording is:

Maximal dose 2.3g per hive as a single administration. One treatment per year.

In contrast, when used as a solution for trickling the instructions state:

Up to two treatments per year (winter and/or spring-summer season in brood-free colonies).

This seems nonsensical to me considering what we now know about oxalic acid – remember, API-Bioxal was licensed in the same year (2015) that Al Toufailia et al., demonstrated it was detrimental to open brood, and I’m reasonably sure this had been shown previously (but can’t currently find the reference).

But, it gets worse …

API-Bioxal contains oxalic acid with powdered silica and glucose. I presume the silica is to keep it free-running. I’m not aware that powdered silica kills mites and I’m damned certain that glucose has no miticidal activity 😉 .

Neither of these two additives – which I’ve previously called cutting agents – are there to increase the activity of the oxalic acid … and the presence of the glucose is a real problem when vaporising.

Single use ...

Caramel coated Sublimox vaporiser pan

When glucose is heated to 160°-230°C it caramelises (actually, this happens at 150°C 6 ), coating the inside of the vaporising pan. This needs to be cleaned out afterwards 7. The instructions state:

Cool down and clean the vaporizer after use to remove possible residue (max 6%, around 0.140 g).

However, I don’t want to focus on what I consider to be a very effective but decidedly sub-optimal product … instead I want to discuss whether repeat treatment with oxalic acid actually works when there is brood present.

Why is repeat treatment recommended?

Remember, it’s not recommended or approved by the manufacturers of API-Bioxal or the Veterinary Medicines Directorate. I really should have titled this section ’Why is repeat treatment recommended by those who advocate it?’

But that wouldn’t fit on a single line 😉 .

When you sublimate oxalic acid, the gas cools and the oxalic acid crystals settle out on every surface within the hive – the walls, the frames, the comb, the bees etc.. For this reason, I prefer to vaporise oxalic acid when the colony is not tightly clustered. I want everything to be coated with oxalic acid, and I particularly want every bee to be coated because that’s where most of the mites are.

Unless they’re in capped cells 🙁 .

And if they’re in capped cells, the only way the Varroa (released when the brood emerges) will come into contact with oxalic acid is if it remains present and active within the hive. Unfortunately, it’s unclear to me exactly how long the oxalic acid does remain active, or what accounts for a drop in its activity.

But it does drop.

If you treat a colony with brood present and count the mites that appear on the Varroa tray every day it looks something like this:

Mite drop per day before and after treatment

’Something like’ because it depends upon the phoretic mite levels and the amount and rate of brood uncapping. For example, you often see higher mite drops from 24-48 hours than 0-24 hours after treatment.

I know not why.

The drop in the first 48 hours – presumably almost all phoretic mites – can be very much higher than the drop from day three onwards 8.

The duration of activity after vaporisation

Some studies claim oxalic acid remains active for 2-3 weeks after administration. I’m a little sceptical that it’s effective for that long and my own rather crude observations of post-treatment mite drop (of brooding colonies) suggests it returns to background levels within 5-7 days.

I could rabbit on about this for paragraphs as I’ve given it a reasonable amount of thought, but fortunately the late Pete Little did the experiment and showed that:

The recommended dose for colonies with brood is three or four doses seven days apart, however I found out that this is not effective enough, and treated 7, 6, 5 4, 3, 2 days apart to find out the most effective which is 5.

It therefore makes sense that three treatments at five day intervals should be sufficient. This period comfortably covers a complete capped brood cycle (assuming there is no drone brood in the colony) which is 12 days long.

Repeated oxalic acid vaporisation treatment regime.

If there is drone brood present you would theoretically need four treatments at 5 day intervals to be sure of covering the 15 day capped brood cycle of drones.

But it turns out there are some additional complications to consider.


In the UK the recommended i.e. approved, maximum dose of API-Bioxal is 2.3 g by vaporisation. Remember my comments about the other rubbish stuff API-Bioxal contains, 2.3 g of API-Bioxal actually contains a fraction over 2 g of oxalic acid dihydrate.

This is the active ingredient.

When comparing different experiments where some have used ‘plain’ oxalic acid dihydrate and others have used – or will use – API-Bioxal, it’s important to consider the amount of the active ingredient only 9 .

In the US, oxalic acid was registered as an approved treatment for Varroa in 2015. By vaporisation, the approved dosage is 1 g of oxalic acid dihydrate per brood box i.e. half that approved in the UK.

Remember also that a deep Langstroth is 5% larger (by volume) than a National brood box.

And Jennifer Berry and colleagues in the University of Georgia have recently determined whether repeated administration of vaporised oxalic acid to a colony rearing brood is an effective way of controlling and reducing Varroa infestations (Berry et al., 2021).

And the answer is … decidedly underwhelming

Here are the experimental details.

The paper doesn’t state 10 when the experiment was done but they measured honey production in the treated colonies and were definitely brood rearing, so I’m assuming late summer.

Colonies were treated with 1 g / box (double Langstroth deeps) vaporised oxalic acid every five days for a total of 35 days i.e. 7 applications. Mite infestation levels (percent of workers carrying phoretic mites) were measured before and after treatment. Almost 100 colonies were used in the experiment, in three apiaries, randomly split into treated and control groups.

Let’s get the easy bit out of the way first … there was no difference in brood levels, adult bees or food stores at the end of the study. The treated hives were not disadvantaged by being treated … but they didn’t gain an advantage either 🙁 .

Mite levels after treatment normalised to pre-treatment levels (dotted line = no change)

During the experiment the percent mite infestation (PMI) levels in the untreated control colonies increased (as expected) by ~4.4. This is an average and there was quite a bit of variation, but it means that an initial mite infestation level of 4 (average) increased to 8.4 i.e. over 8 mites on every 100 adult workers in the hive.

3% is often considered the cutoff above which treatment is necessary.

Overall, the PMI of treated colonies reduced over the duration of the experiment … but only by 0.7.

From a colony health perspective this is a meaningless reduction.

Seven treatments with the recommended (in the US) dose of oxalic acid stopped the mite levels increasing, but did not reduce them.

Repeated administration of the US-approved oxalic acid dose by vaporisation does not reduce mite levels in a way that seems likely to significantly benefit the colony.


Dosage, again

I’m not sure the primary data used to justify the US approved 1 g / box dosage. Early studies by Thomas Radetzki (PDF) showed a 95% reduction in mite levels using a dose of 1.4 g. This was a large study involving ~1500 colonies and a dose of 2.8 g was not significantly more effective. I’m quoting the figures for broodless colonies 11.

The Berry results were similar to two smaller previous studies by Jamie Ellis and colleagues (Jack et al., 2020, 2021) who demonstrated that 1 g oxalic acid vaporised three times at weekly intervals was ineffective in controlling mite levels.

However Jack et al., (2021) also applied a similar treatment schedule using different doses of oxalic acid.

Data from Jack et al., 2021 using different repeat doses of oxalic acid

Ignore the intermediate values in panel A, just look at the pretreatment and ‘3 weeks’ mite infestation values.

Mite levels increased in untreated controls and decreased in all treated colonies. However, there was a clear dose response where the more oxalic acid used the greater the impact on the mite levels.

Four grams of oxalic acid reduced the mite infestation rate significantly … from ~5% to ~2% (I’ll return to this). However, the intermediate levels of oxalic acid, whilst reducing mite levels, did not do so significantly from the next closest amount of oxalic acid. For example, 1 g wasn’t significantly more effective than no treatment (as already stated), 2 g was not significantly more effective than 1 g and 4 g was not significantly more effective than 2 g.

But wait … there’s more

I’m familiar with two other studies that look at dose and/or repetition and efficacy (there are more, but this isn’t meant to be an exhaustive review, more a ”Do we know enough?” overview).

Gregoric et al., (2016) published a 12 study that appeared to use combinations of treatments in multiple apiaries. The abstract claims 97% reduction using three 1 g vaporisations, though these are spread over a 57 day period (!) stretching from mid-August to late-November. Mite drop in November following treatment was ~75% (presumably broodless) , but only 10-20% in August. Interestingly I can’t find the figure 97% anywhere in the results …

Finally, Al Toufailia et al., (2015) investigated the dose response to vaporised oxalic acid, showing an 80% reduction in infestation at 0.56 g and 93-98% who using 1.125, 2.25 and 4 g of oxalic acid. All of these studies were determined using broodless colonies.

The Al Toufailia and Jack studies – as well as the Berry study – also reported on adverse effects on the colony. With certain exceptions vaporisation was well tolerated. Some colonies went queenless. Where the queen was caged in late summer to render it broodless (Jack et al.,) some colonies subsequently failed to overwinter successfully (though, look on the bright side, mite levels were reduced 😉 ).

Don’t do that at home … I presume they impacted the production of winter bees.

I’m not sure there’s a compelling, peer-reviewed study that definitively shows that repeat treatments of vaporised oxalic acid administered to a brood rearing colony reduces mite levels sufficiently.

Yes, the Jack et al., (2020) showed a significant reduction in the infestation rate (using 4 g three times at seven day intervals), but it was still around 2%.

In late summer, with 20-30,000 bees in the box and 6 frames of brood, that’s still ~600 mites (and potentially more in the capped brood).

In midwinter with about 10,000 workers and much smaller amounts of brood in the hive a 2% infestation rate is still 200 mites.

That’s still a lot of mites for a nearly broodless colony … I treat my colonies when broodless (and assume I’m killing ~90% of the mites present) and am disappointed if there are 45 mites on the Varroa tray. 50 mites on 10,000 workers is an infestation rate of 0.5%.

I’ve waffled on for too long.

All those advocating – or using – repeated oxalic acid vaporisation on brood rearing colonies in late autumn/winter need to think about:

  • dosage … 1 g is clearly too little (at a 5-7 day interval, but what if it was at a 4 day interval?), 2 g is better and 4 g is well-tolerated and certainly more effective
  • frequency … which I suspect is related to dosage. The goal must be to repeat sufficiently frequently that there is never a period when oxalic acid levels fall below a certain amount (and I don’t know what that amount is). 1 g on a daily basis might work well … who knows?
  • duration … you must cover a full capped brood cycle with the repeats
  • adverse effects … inevitable, but can be minimised with a rational treatment schedule

Broodless is best

It really is.

But, if your colonies are never broodless 13 then I wouldn’t be confident that repeat treatment was controlling Varroa levels sufficiently.

I have treated repeatedly with oxalic acid. In the good old days before API-Bioxal appeared. It certainly reduced Varroa levels, but not as well as my chosen Apivar does these days.

Repeated oxalic acid vaporisation is regularly proposed as the solution to Varroa but I’m certainly not confident that the data is there to support this claim.

Take care out there 😉


In a future post I’ll revisit this … I’ve got a pretty clear idea of how I’d go about demonstrating whether repeated oxalic acid treatments are effective in meaningfully reducing mite levels i.e. sufficient to protect the colony overwinter and through to the following late summer.


Al Toufailia, H., Scandian, L. and Ratnieks, F.L.W. (2015) ‘Towards integrated control of varroa: 2) comparing application methods and doses of oxalic acid on the mortality of phoretic Varroa destructor mites and their honey bee hosts’, Journal of Apicultural Research, 54(2), pp. 108–120. Available at:
Berry, J.A. et al. (2022) ‘Assessing Repeated Oxalic Acid Vaporization in Honey Bee (Hymenoptera: Apidae) Colonies for Control of the Ectoparasitic Mite Varroa destructor’, Journal of Insect Science, 22(1), p. 15. Available at:
Gregorc, A. et al. (2016) ‘Integrated varroa control in honey bee (Apis mellifera carnica) colonies with or without brood’, Journal of Apicultural Research, 55(3), pp. 253–258. Available at:
Jack, C.J., van Santen, E. and Ellis, J.D. (2020) ‘Evaluating the Efficacy of Oxalic Acid Vaporization and Brood Interruption in Controlling the Honey Bee Pest Varroa destructor (Acari: Varroidae)’, Journal of Economic Entomology, 113(2), pp. 582–588. Available at:
Jack, C.J., van Santen, E. and Ellis, J.D. (2021) ‘Determining the dose of oxalic acid applied via vaporization needed for the control of the honey bee (Apis mellifera) pest Varroa destructor’, Journal of Apicultural Research, 60(3), pp. 414–420. Available at:


Synopsis : The colony needs to be broodless for effective oxalic acid treatment in winter. You might be surprised at how early in the winter this broodless period can be (if there is one). How can you easily determine whether the colony is broodless?


In late spring or early summer a broodless colony is a cause for concern. Has the colony swarmed? Have you killed the queen? Since worker brood takes 21 days from egg to emergence, a broodless colony has gone 3 weeks without any eggs being laid.

You’re right to be concerned about the queen.

Of course, since you’ve been inspecting the hive on a 7-10 day rotation, you noticed the absence of eggs a fortnight ago, so you’re well on your way to knowing what the problem is, and therefore being able to solve it 😉 .

But in late autumn or early winter a broodless colony is not a cause for concern.

It’s an opportunity.

Are they rearing brood? Probably by now … it’s mid-January

In my view it’s a highly desirable state for the colony to be in.

If the colony is broodless then the ectoparasitic Varroa mites cannot be hiding away under the cappings, gorging themselves on developing pupae and indulging in their – frankly repellent – incestuous reproduction.


Instead the mites will all be riding around the colony on relatively young workers (and in winter, physiologically all the workers in the hive are ‘young’, irrespective of their age) in what is incorrectly termed the phoretic stage of their life cycle.

This is incorrect as phoresy means “carried on the body of another organism without being parasitic” … and these mites are not just being carried around, they’re also feeding on the worker bees.

You can read all about phoretic mites, their diet and their repulsive reproductive habits in previous posts.

What is the opportunity?

A broodless colony in the winter is an opportunity because phoretic mites (whether misnamed or not) are very easy to kill because they’re not protected by the wax capping covering the sealed brood.

Total mite numbers surviving OA treatment depends upon the proportion in capped cells

And today’s post is all about identifying when the colony is broodless.

Discard your calendar

I’ve said it before 1 … the activities of the colony (swarming, nectar gathering, broodlessness 2 ) are not determined by the calendar.

Instead they’re determined by the environment. This covers everything from the available forage to the climate and recent weather 3.

And the environment changes. It changes from year to year in a single location – an early spring, a late summer – and it differs between locations on the same calendar date.

All of which means that, although you can develop a pretty good idea of when you need to intervene or manage things – like adding supers, or conducting swarm control – these are reactive responses to the state of the colony, rather than proactive actions applied because it’s the 9th of May 4.

And exactly the same thing applies to determining when the colony is broodless in the winter. Over the last 6 years I’ve had colonies that are broodless sometime between between mid October and mid/late December. They’re not broodless for this entire period, but they are for some weeks starting from about mid-October and ending sometime around Christmas.

Actually, to be a little more precise, I generally know when they start to be broodless, but I rarely monitor when they stop being broodless, not least because it’s a more difficult thing to determine (as will become clear).

Don’t wait until Christmas

A broodless colony is an opportunity because the phoretic mites can easily be killed by a single application of oxalic acid.

Many beekeepers treat their colonies with oxalic acid between Christmas and New Year.

It was how they were taught when they started beekeeping, it’s convenient because it’s a holiday period, it’s a great excuse to escape to the apiary and avoid another bellyful of cold cuts followed by mince pies (or the inlaws 5 ) and because it’s ‘midwinter’.

But, my experience suggests this is generally too late in the year.  The colony is often already rearing brood by the time you’ve eaten your first dozen mince pies.

If you’re going to go to the trouble of treating your colonies with oxalic acid, it’s worth making the effort to apply it to achieve maximum efficacy 6.

I’m probably treating my colonies with oxalic acid in 8-9 days time. The queens have stopped laying and there was very little sealed brood present in the colonies I briefly checked on Monday this week. The sealed brood will have all emerged by the end of next week.

It’s worth making plans now to determine when your colonies are broodless. Don’t just assume sometime between Christmas and New Year ’will be OK’.

But it’s too early now for them to be broodless … or to treat with oxalic acid

If your colonies are going to go through a broodless period this winter 7 it’s more likely to be earlier rather than later.


Because if the colonies had a long broodless period stretching into mid-January or later it’s unlikely they’ll build up strongly enough to swarm … and since swarming is honey bee reproduction, it’s a powerful evolutionary and selective pressure.

Colonies that start rearing brood early, perhaps as early as the winter solstice, are more likely to build up strongly, and therefore are more likely to swarm, so propagating the genes for early brood rearing.

But surely it would be better to treat with oxalic acid towards the end of the winter?

Mites do not reproduce during the misnamed phoretic stage of the life cycle. Therefore, aside from those mites lost (hopefully through the open mesh floor) due to allogrooming, or that just die 8, there will be no more mites later in the broodless period than at the beginning.

Since the mites are going to be feeding on adult workers (which is probably detrimental to those workers), and because it’s easier to detect the onset of broodlessness (see below), it makes sense to treat earlier rather than later.

Your bees will thank you for it 😉 .

How to detect the absence of brood

Tricky … how do you detect if something is not present?

I think the only way you can be certain is to conduct a full hive inspection, checking each side of every frame for the presence of sealed brood.

Perhaps not the ideal conditions for a full hive inspection

But I’m not suggesting you do that.

It’s a highly intrusive thing to do to a colony in the winter. It involves cracking open the propolis seal to the crownboard, prising apart the frames and splitting up the winter cluster.

On a warm winter day that’s a disruptive process and the bees will show their appreciation 🙁 . On a cold winter day, particularly if you’re a bit slow checking the frames (remember, the bees will appear semi-torpid and will be tightly packed around any sealed brood present, making it difficult to see), it could threaten the survival of the colony.

And don’t even think about doing it if it’s snowing 🙁 .

Even after reassembling the hive the colony is likely to suffer … the broken propolis seals will let in draughts, the colony will have to use valuable energy to reposition themselves.

A quick peek

I have looked in colonies for brood in the winter. However, I don’t routinely do this.

Now, in mid/late autumn the temperature is a bit warmer and it’s less disruptive. I checked half a dozen on Sunday/Monday. It was about 11°C with rain threatening. I had to open the boxes to retrieve the Apivar strips anyway after the 9-10 week treatment period.

Recovered Apivar strips

I had repositioned the Apivar strips about a month ago, moving them in from the outside frames to the edges of the shrinking brood nest. By then – early October – most of the strips were separated by just 3 or 4 frames.

The flanking frames were all jam packed with stores. The fondant blocks were long-gone and the bees had probably also supplemented the stores with some nectar from the ivy.

Over the last month the brood nest continued to shrink, but it won’t have moved somewhere else in the hive … it will still be somewhere between the Apivar strips, and about half way is as good a place as any to start.

Apivar strip (red bars) placement and the shrinking brood nest

So, having removed the crownboard and the dummy board, I just prise apart the frames to release the Apivar strips and then quickly look at the central frame between them. If there’s no sealed brood there, and you can usually also have a look at the inner faces of the flanking frames down the ‘gap’ you’ve opened, then the colony is probably broodless.

It takes 45-60 seconds at most.

It’s worth noting that my diagram shows the broodnest located centrally in the hive. It usually isn’t. It’s often closer to the hive entrance and/or (in poly boxes) near the well insulated sidewall of the hive.

Hive debris

But you don’t need to go rummaging through the brood box to determine whether the colony is broodless (though – as noted earlier – it is the probably the only was you can be certain there’s no brood present).

The cappings on sealed brood are usually described as being ‘biscuit-coloured’.

Not this colour of biscuit

‘Biscuit-coloured’ is used because all beekeepers are very familiar with digestive biscuits (usually consumed in draughty church halls). If ‘biscuit-coloured’ made you instead think of Fox’s Party Rings then either your beekeeping association has too much money, or you have young children.

Sorry to disappoint you … think ‘digestives’ 😉 .

That’s more like it …

The cappings are that colour because the bees mix wax and pollen to make them air-permeable. If they weren’t the developing pupa wouldn’t be able to breathe.

And when the developed worker emerges from the cell the wax capping is nibbled away and the ‘crumbs’ (more biscuity references) drop down through the cluster to eventually land on the hive floor.

Where they’re totally invisible to the beekeeper 🙁 .

Unless it’s an open mesh floor … in which case the crumbs drop through the mesh to land on the ground where they’ll soon get lost in the grass, carried off by ants or blown away 🙁 .

It should therefore be obvious that if you want detect the presence of brood emerging you need to have a clean tray underneath the open mesh floor (OMF).

Open mesh floors and Correx boards

Most open mesh floors have a provision to insert a Correx (or similar) board underneath the mesh. There are good and bad implementations of this.

Poor designs have a large gap between the mesh and the Correx board, with no sealing around the edges 9. Consequently, it’s draughty and stuff that lands on the board gets blown about (or even blown away).

Good designs – like the outstanding cedar floors Pete Little used to make – have a close-fitting wooden tray on which the Correx board is placed. The tray slides underneath the open mesh floor and seals the area from draughts 10.

Open mesh floor and close-fitting Varroa tray by Pete Little

Not only does this mean that the biscuity-coloured crumbs stay where they fall, it also means that this type of floor is perfect when treating the colony with vaporised oxalic acid. Almost none escapes, meaning less chance of being exposed to the unpleasant vapours if you’re the beekeeper, and more chance of being exposed to the unpleasant vapours if you’re a mite 😉 .

Since the primary purpose of these Correx trays is to determine the numbers of mites that drop from the colony, either naturally or during treatment, it makes sense if they are pale coloured. It’s also helpful if they are gridded as this makes counting mites easier.

Easy counting ...

Easy counting …

And, with a tray in situ for a 2-3 days you can quickly get an idea whether there is brood being uncapped.

Reading the runes

The diagram below shows a schematic of the colony (top row) and the general appearance of debris on the Varroa tray (bottom row).

It’s all rather stylised.

The brood nest – the grey central circle is unlikely to be circular, or central 11.

The shrinking broodnest (top) and the resulting pattern on the Varroa tray (bottom)

Imagine that the lower row of images represent the pattern of the cappings that have fallen onto the tray over at least 2-3 days.

Biscuit-coloured cappings on Varroa tray

As the brood nest shrinks, the area covered by the biscuit-coloured cappings is reduced. At some point it is probably little more than one rather short stripe, indicating small amounts of brood emerging on two facing frames.

With just one observation highlighted should you plan to treat next week?

Let’s assume you place the tray under the open mesh floor and see that single, short bar of biscuity crumbs (highlighted above). There’s almost nothing there.

Do you assume that it will be OK to treat them with oxalic acid the following week?

Not so fast!

With just a single observation there’s a danger that you could be seeing the first brood emerging when there’s lots more still capped on adjacent frames.

It’s unlikely – particularly in winter – but it is a possibility.

Far better is to make a series of observations and record the trajectory of cappings production. Is it decreasing or is it increasing?

Multiple observations allows the expanding or contracting brood nest to be monitored

With a couple of observations 10-12 days apart you’ll have a much better idea of whether the brood area is decreasing over time, or increasing. Repeated observations every 10-12 days will give you a much better idea of what’s going on.

Developing brood is sealed for ~12 days. Therefore, if brood rearing is starting, the first cappings that appear on the Varroa tray are only a small proportion of the total sealed brood in the colony.

Very little cappings but certainly not broodless

Of course, in winter, the laying rate of the queen is much reduced. Let’s assume she’s steadily laying just 50 eggs per day i.e. about 12.5 cm2. By the time the first cappings appear on the Varroa tray (as the first 50 workers emerge) there will be another 600 developing workers occupying capped cells … and the worry is that they’re occupying those cells with a Varroa mite.

The cessation of brood rearing

In contrast, if there’s brood in the colony but the queen is slowing down and eventually stops egg laying, with repeated observations 12 the amount and coverage of the biscuit-coloured cappings will reduce and eventually disappear.

At that point you can be reasonably confident that there is no more sealed brood in the colony and, therefore, that it’s an appropriate time to treat with oxalic acid.

In this instance – and unusually – absence of evidence is evidence of absence 🙂 .

But my bees are never broodless in the winter

All of the above still applies, with the caveat that rather than looking for the absence of any yummy-looking biscuity crumbs on the tray, you are instead looking for the time that they cover the minimal area.

If the colony is never broodless in winter it still makes sense to treat with oxalic acid when the brood is at the lowest level (refer back to the first graph in this post).

At that time the smallest number of mites are likely to be occupying capped cells.

However, this assumption is incorrect if the small number of cells are very heavily parasitised, with multiple mites occupying a single sealed cell. This can happen – at least in summer – in heavily mite infested hives. I’ve seen 12-16 mites in some cells and Vincent Poulin reported seeing 26 in one cell in a recent comment.

Urgh! (again)

I’m not aware of any data on infestation levels of cells in winter when brood levels are low, though I suspect this type of multiple occupancy is unlikely to occur (assuming viable mite numbers are correspondingly low). I’d be delighted if any readers have measured mites per cell in the winter, or know of a publication in which it’s reported 13.

This isn’t an exact science

What I’ve described above sounds all rather clinical and precise.

It isn’t.

Draughts blow the cappings about on the tray. The queen’s egg laying varies from day to day, and can stop and start in response to low temperatures or goodness-knows-what-else. The pattern of cappings is sometimes rather difficult to discern. Some uncapped stores can have confoundingly dark cappings etc.

But it is worth trying to work out what’s going on in the box to maximise the chances that the winter oxalic acid treatment is applied at the time when it will have the greatest effect on the mite population.

By minimising your mite levels in winter you’re giving your bees the very best start to the season ahead.

Unrestricted mite replication – the more you start with the more you end up with (click image for more details)

The fewer mites you have at the start of the season, the longer it takes for dangerously high mite levels (i.e. over 1000 according to the National Bee Unit) to develop. Therefore, by reducing your mite levels in the next few weeks you are increasing your chances that the colony will be able to rear large numbers of healthy winter bees for next winter.

That sounds to me like a good return on the effort of making a few trips to the apiary in November and early December …


Winter covers and colony survival

Synopsis : A recent study shows increased overwinter colony survival of ‘covered’ hives wrapped in Correx and with insulation under the roof. What provides the most benefit, and are the results as clear cut as they seem?


A recent talk by Andrew Abrahams to the Scottish Native Honey Bee Society coincided with me catching up my 1 backlog of scientific papers on honey bees. I’d been reading a paper on the benefits of wrapping hives in the winter and Andrew commented that he did exactly that to fend off the worst of the wet weather. Andrew lives on the island of Colonsay about 75 km south of me and we both ‘benefit’ from the damp Atlantic climate.

The paper extolled the virtues of ‘covered’ hives and the data the researchers present looks, at first glance, compelling.

For example, <5% of covered hives perished overwinter in contrast to >27% of the uncovered control hives.


Why doesn’t everyone wrap their hives?

However, a closer look at the paper raises a number of questions about what is actually benefitting (or killing) the colonies.

Nevertheless, the results are interesting. I think the paper poses rather more questions than it answers, but I do think the results show the benefits of hive insulation and these are worth discussing.

Bees don’t hibernate

Hibernation is a physiological state in which the metabolic processes of the body are significantly reduced. The animal becomes torpid, exhibiting a reduced heart rate, low body temperature and reduced breathing. Food reserves e.g. stored fat, are conserved and the animal waits out the winter until environmental conditions improve.

However, bees don’t hibernate.

Winter cluster 3/1/21 3°C (insulation block removed from the crownboard)

If you lift the lift the roof from a hive on a cold midwinter day you’ll find the bees clustered tightly together. But, look closely and you’ll see that the bees are moving. Remove the crownboard and some bees will probably fly.

The cluster conserves warmth and there is a temperature gradient from the outside – termed the mantle – to the middle (the core).

If chilled below ~5.5°C a bee becomes semi-comatose 2 and unable to warm herself up again. The mantle temperature of the cluster never drops below ~8°C, but the core is maintained at 18-20°C when broodless or ~35°C if they are rearing brood. I’ve discussed the winter cluster in lots more detail a couple of years ago.

The metabolic activity of the clustered winter bees is ‘powered’ by their consumption of the stores they laid down in the autumn. It seems logical to assume that it will take more energy (i.e. stores) to maintain a particular cluster temperature if the ambient temperature is lower.

Therefore, logic would also suggest that the greater the insulation properties of the hive – for a particular difference in ambient to cluster temperature – the less stores would be consumed.

Since winter starvation is bad for bees (!) it makes sense to be thinking about this now, before the temperatures plummet in the winter.

Cedar and poly hives

I’m not aware of many comparative studies of the insulation properties of hives made from the two most frequently used materials – wood and polystyrene. However, Alburaki and Corona (2021) have investigated this and shown a small (but statistically significant) difference in the inner temperature of poly Langstroth hives when compared to wooden ones.

Poly hives were ~0.5°C warmer and, perhaps more importantly, exhibited much less variation in temperature over a 24 hour period.

Temperature and humidity in poly and wood hives

In addition to the slight temperature difference, the humidity within the wooden hives was significantly higher than that of poly.

The hives used in this study were occupied by bees and the temperature and humidity were recorded from sensors placed in a modified frame in the ‘centre of the brood box’. The external ambient temperature averaged 0°C, but fluctuated over a wide range (-10°C to 20°C) during the four month study 3.

Temperature anomalies

Whilst I’m not surprised that the poly hives were marginally warmer, I was surprised how low the internal hive temperatures were. The authors don’t comment on whether the ‘central’ frame was covered with bees, or whether the bees were rearing brood.

The longitudinal temperature traces (not reproduced here – check the paper) don’t help much either as they drop in mid-February when I would expect brood rearing to be really gearing up … Illogical, Captain.

The authors avoid any discussion on why the average internal temperature was at least 5-8°C cooler than the expected temperature of the core of a clustered broodless colony, and ~25°C cooler than a clustered colony that was rearing brood.

My guess is that the frame with the sensors was outside the cluster. For example, perhaps it was in the lower brood box 4 with the bees clustered in the upper box?

We’ll never know, but let’s just accept that poly hives – big surprise 😉 – are better insulated. Therefore the bees should need to use less stores to maintain a particular internal temperature.

And, although Alburaki and Corona (2021) didn’t measure this, it did form part of a recent study by Ashley St. Clair and colleagues from the University of Illinois (St. Clair et al., 2022).

Hive covers reduce food consumption and colony mortality

This section heading repeats the two key points in the title of this second paper.

I’ll first outline what was done and describe these headline claims in more detail. After that I’ll discuss the experiments in a bit more detail and some caveats I have of the methodology and the claims.

I’ll also make clear what the authors mean by a ‘hive cover’.

The study was conducted in central Illinois and involved 43 hives in 8 apiaries. Hives were randomly assigned to ‘covered’ or ‘uncovered’ i.e. control – groups (both were present in every apiary) and the study lasted from mid-November to the end of the following March.

Ambient (blue), covered (black) and control (dashed) hive temperatures

There were no significant differences in internal hive temperature between the two groups and – notably – the temperatures were much higher (15°-34°C) than those recorded by Alburaki and Corona (2021).

All colonies, whether covered or uncovered, got lighter through the winter, but the uncovered colonies lost significantly more weight once brood rearing started February. The authors supplemented all colonies with sugar cakes in February and the control colonies used ~15% more of these additional stores before the study concluded.

I don’t think any of these results are particularly surprising – colonies with additional insulation get lighter more slowly and need less supplemental feeding.

The surprising result was colony survival.

Less than 5% (1/22) of the covered hives perished during the winter but over 27% (6/21) of the control hives didn’t make it through to the following spring.

(Un)acceptable losses

To put these last figures into context the authors quote a BeeI Informed Partnership survey where respondents gave a figure of 23.3% as being ’acceptable’ for winter colony losses.

That seems a depressingly high figure to me.

However, look – and weep – at the percentage losses across the USA in the ’20/’21 winter from that same survey 5.

Bee Informed Partnership 2021 winter colony losses (preliminary data)

This was a sizeable survey involving over 3,300 beekeepers managing 192,000 colonies (~7% of the total hives in the USA).

If hive covers reduce losses to just 5% why does Illinois report winter losses of 47%? 6

Are the losses in this manuscript suspiciously low?

Or, does nobody use hive covers?

I don’t know the answers to these questions, but I also wasn’t sure when I started reading the paper what the authors meant by a hive ‘cover’ … which is what I’ll discuss next.

Hive covers

The hives used in this study were wooden Langstroths and the hive covers were 4 mm black corrugated polypropylene sleeves.

This is what I call Correx … one of my favourite materials for beekeeping DIY.

These hive covers are available commercially in the USA (and may be here, I’ve not looked). At $33 each (Yikes) they’re not cheap, but how much is a colony worth?

Significantly more than $33.

I’ve not bothered to make the conversion of Langstroth Deep dimensions (always quoted in inches 🙁 ) to metric and then compared the area of Correx to the current sheet price of ~£13 … but I suspect there are savings to be made by the interested DIYer 7.

However, knowing (and loving) Correx, what strikes me is that it seems unlikely to provide much insulation. At only 4 mm thick and enclosing an even thinner air gap, it’s not the first thing I’d think of to reduce heat loss 8.

4 mm Correx sheet

Thermal resistance is the (or a) measure of the insulating properties of materials. It’s measured in the instantly forgettable units of square metre kelvin per watt m2.K/W.

I couldn’t find a figure for 4 mm Correx, but I did manage to find some numbers for air.

A 5 mm air gap – greater than separates the inner and outer walls of a 4 mm Correx hive cover – has a thermal resistance of 0.11 m2.K/W.


It’s not possible to directly compare this with anything meaningful, but there is data available for larger ‘thicknesses’ of air, and other forms of insulation.

An air gap of 100 mm has a thermal resistance of about 0.17 m2.K/W. For comparison, the same thickness of Kingspan (blown phenolic foam wall insulation, available from almost any building site skip) has a thermal resistance of 5, almost 30 times greater.

And, it turns out, St. Clair and colleagues also added a foam insulation board on top of the hive crownboard (or ‘inner cover’ as they call it in the USA). This board was 3.8 cm thick and has somewhat lower thermal resistance than the Kingspan I discussed above.

It might provide less insulation than Kingspan, but it’s a whole lot better than Correx.

This additional insulation is only briefly mentioned in the Materials and Methods and barely gets another mention in the paper.

A pity, as I suspect it’s very important.

Perspex crownboard with integrated 50 mm Kingspan insulation

I’m very familiar with Kingspan insulation for hives. All my colonies have a 5 cm thick block present all year – either placed over the crownboard, built into the crownboard or integrated into the hive roof.

Two variables … and woodpeckers

Unfortunately, St. Clair and colleagues didn’t compare the weight loss and survival of hives ‘covered’ by either wrapping them in Correx or having an insulated roof.

It’s therefore not possible to determine which of these two forms of protection is most beneficial for the hive.

For reasons described above I think the Correx sleeve is unlikely to provide much direct thermal insulation.

However, that doesn’t mean it’s not beneficial.

At the start of this post I explained that Andrew Abrahams wraps his hives for the winter. He appears to use something like black DPM (damp proof membrane).

Hive wrapped in black DPM (to prevent woodpecker damage)

Andrew uses it to keep the rain off the hives … I’ve used exactly the same stuff to prevent woodpecker damage to hives during the winter.

It’s only green woodpeckers (Picus viridis) that damage hives. It’s a learned activity; not all green woodpeckers appear to know that beehives are full of protein-rich goodies in the depths of winter. If they can’t grip on the side of the hive they can’t chisel their way in.

When I lived in the Midlands the hives always needed winter woodpecker protection, but the Fife Yaffles 9 don’t appear to attack hives.

Here on the west coast, and on Colonsay, there are no green woodpeckers … and I know nothing about the hive-eating woodpeckers of Illinois.

So, let’s forget the woodpeckers and return to other benefits that might arise from wrapping the hive in some form of black sheeting during the winter.

Solar gain and tar paper

Solar gain is the increase in thermal energy (or temperature as people other than physicists with freakishly large foreheads call it) of something – like a bee hive – as it absorbs solar radiation.

On sunny days a black DPM-wrapped hive (or one sleeved in a $33 Correx/Coroplast hive ‘cover’) will benefit from solar gain. The black surface will warm up and some of that heat should transfer to the hive.

And – in the USA at least – there’s a long history of wrapping hives for the winter. If you do an internet search for ‘winterizing hives’ or something similar 10 you’ll find loads of descriptions (and videos) on what this involves.

Rather than use DPM, many of these descriptions use ‘tar paper’ … which, here in the UK, we’d call roofing felt 11.

Roofing felt – at least the stuff I have left over from re-roofing sheds – is pretty beastly stuff to work with. However, perhaps importantly, it has a rough matt finish, so is likely to provide significantly more solar gain than a covering of shiny black DPM.

I haven’t wrapped hives in winter since I moved back to Scotland in 2015. However, the comments by Andrew – who shares the similarly warm and damp Atlantic coastal environment – this recent paper and some reading on solar gain are making me wonder whether I should.

Fortunately, I never throw anything away, so should still have the DPM 😉

Winter losses

Illinois has a temperate climate and the ambient temperature during the study was at or below 0°C for about 11 weeks. However, these sorts of temperatures are readily tolerated by overwintering colonies. It seems unlikely that colonies that perished were killed by the cold.

So what did kill them?

Unfortunately there’s no information on this in the paper by St. Clair and colleagues.

Perhaps the authors are saving this for later … ’slicing and dicing’ the results into MPU’s (minimal publishable units) to eke out the maximum number of papers from their funding 12, but I doubt it.

I suspect they either didn’t check, checked but couldn’t determine the cause, or – most likely – determined the cause(s) but that there was no consistent pattern so making it an inconclusive story.

But … it was probably Varroa and mite-transmitted Deformed wing virus (DWV).

It usually is.


There were some oddities in their preparation of the colonies and late-season Varroa treatment.

Prior to ‘winterizing’ colonies they treated them with Apivar (early August) and then equalised the strength of the colonies. This involves shuffling brood frames to ensure all the colonies in the study were of broadly the same strength (remember, strong colonies overwinter better).

A follow-up Varroa check in mid-October showed that mite levels were still at 3.5% (i.e. 10.5 phoretic mites/300 bees) and so all colonies were treated with vaporised oxalic acid (OA).

Sublimox vaporiser

Sublimox vaporiser … phoretic mites don’t stand a chance

In early November, mite levels were down to a more acceptable 0.7%. Colonies received a second OA treatment in early January.

For whatever reason, the Apivar treatment appears to have been ineffective.

When colonies are treated for 6-10 weeks with Apivar (e.g. early August to mid-October) mite levels should be reduced by >90%.

Mite infestation levels of 3.5% suggest to me that the Apivar treatment did not work very well. That being the case, the winter bees being reared through August, September and early October would have been exposed to high mite levels, and so acquired high levels of DWV.

OA treatment in mid-October would kill these remaining mites … but the damage had already been done to thediutinus’ winter bees.

That’s my guess anyway.

An informed guess, but a guess nevertheless, based upon the data in the paper and my understanding of winter bee production, DWV and rational Varroa management.

In support of this conclusion it’s notable that colonies died from about week 8, suggesting they were running out of winter bees due to their reduced longevity.

If I’m right …

It raises the interesting question of why the losses were predominantly (6 vs 1) of the control colonies?

Unfortunately the authors only provide average mite numbers per apiary, and each apiary contained a mix of covered and control hives. However, based upon the error bars on the graph (Supporting Information Fig S1 [PDF] if you’re following this) I’m assuming there wasn’t a marked difference between covered and control hives.

I’ve run out of informed guesses … I don’t know the answer to the question. There’s insufficient data in the paper.

Let’s briefly revisit hive temperatures

Unusually, I’m going to present the same hive temperature graph shown above to save you scrolling back up the page 13.

Ambient (blue), covered (black) and control (dashed) hive temperatures

There was no overall significant difference in hive temperature between the control and covered colonies. However, after the coldest weeks of the winter (7 and 8 i.e. the end of February), hive temperatures started to rise and the covered colonies were consistently marginally warmer. By this time in the season the colonies should be rearing increasing amounts of brood.

I’ve not presented the hive weight changes. These diverged most significantly from week 8. The control colonies used more stores to maintain a similar (actually – as stated above – marginally lower) temperature. As the authors state:

… covered colonies appeared to be able to maintain normal thermoregulatory temperatures, while consuming significantly less stored food, suggesting that hive covers may reduce the energetic cost of nest thermoregulation.

I should add that there was no difference in colony strength (of those that survived) between covered and control colonies; it’s not as though those marginally warmer temperatures from week 9 resulted in greater brood rearing.

Are lower hive temperatures ever beneficial in winter?


Varroa management is much easier if colonies experience a broodless period in the winter.

A single oxalic acid treatment during this broodless period should kill 95% of mites – as all are phoretic – leaving the colony in a very good state for the coming season.

If you treat your colonies early enough to protect the winter bees there will inevitably be some residual mite replication in the late season brood, thereby necessitating the midwinter treatment as well.

I’m therefore a big fan of cold winters. The colony is more likely to be broodless at some point.

I was therefore reassured by the similarity in the temperatures of covered and control colonies from weeks 48 until the cold snap at the end of February. Covered hives should still experience a broodless period.

I’m off for a rummage in the back of the shed to find some rolls of DPM for the winter.

I don’t expect it will increase my winter survival rates (which are pretty good) and I’m not going to conduct a controlled experiment to see if it does.

If I can find the DPM I’ll wrap a few hives to protect them from the winter weather. With luck I should be able to rescue an additional frame or two of unused stores in the spring (I often can anyway). I stack this away safely and then use it when I’m making up nucs for queen mating.

I suspect that the insulation over the crownboard provides more benefit than the hive ‘wrap’. As stated before, all my colonies are insulated like this year round as I’m convinced it benefits the colony, reducing condensation over the cluster and keeping valuable warmth from escaping. However, wrapping the hive for solar gain and/or weather protection is also worth considering.


Alburaki, M. and Corona, M. (2022) ‘Polyurethane honey bee hives provide better winter insulation than wooden hives’, Journal of Apicultural Research, 61(2), pp. 190–196. Available at:

St. Clair, A.L., Beach, N.J. and Dolezal, A.G. (2022) ‘Honey bee hive covers reduce food consumption and colony mortality during overwintering’, PLOS ONE, 17(4), p. e0266219. Available at:

Biological control with Varroa

Synopsis : Honey bees were eradicated on Santa Cruz Island following the introduction of Varroa. This provides some useful lessons for beekeepers on the importance of controlling Varroa.


Honey bees are not native to North America. They were first introduced in March 1622 at Jamestown, Virginia. The bees did well and spread west, following the settlers. They finally arrived on the west coast, in Santa Clara, California, 231 years later in 1853. Of a dozen hives ordered by Christopher Shelton, a Santa Clara botanist and rancher, only one survived the journey from New York via Panama.

Shelton barely had a chance to enjoy his bees 1 as he was unfortunately killed when the steamboat Jenny Lind exploded in mid-April 1853.

Explosion on the steamboat Jenny Lind near San Francisco, California

His bees survived 2 and three hives derived from the original stock were auctioned for $110 each. This was over 20 times the price of hives on the east coast at that time and equivalent to over $4200 today 3.

Californian Channel Islands map

Bees were in demand and they continued to spread – both as feral swarms and as farmers established apiaries to help pollination and for honey production. Having reached the California coast they were then spread to the nearby islands. Bees were transported to Santa Cruz, the largest of the eight Channel Islands near Los Angeles, in the 1880’s. They flourished, but did not spread to the other Channel Islands.

Field station, nature reserves, pigs and bees

Santa Cruz Island is 250 square kilometres in area and lies ~35 km south of Santa Barbara. It is one of the four Northern Channel islands. There is a long central valley lying approximately east-west and the rocky mountainous land reaches 740 m. It has a marine temperate climate; the average low and high temperatures are 9°C and 21°C respectively and it receives about 0.5 m of rain a year. It is a good environment for bees.

From the 1880’s to 1960’s Santa Cruz Island was farmed – primarily for wine and wool, and from the 1940’s for cattle – but, after period of university geology field trips and the establishment of a field station on the island, in 1973 it became part of the University of California’s Natural Reserve System (UC NRS).

In the late 1970’s the Stanton family sold their ranching business on the island to The Nature Conservancy who subsequently bought additional land on the eastern end of the island.

Santa Cruz Island is now jointly owned by The Nature Conservancy, National Parks Service, UC NRS and the Santa Cruz Island Foundation and much of the island is used for scientific research and education.

But what about the bees?

Good question.

As a nature reserve and research station, the presence of non-native species causes a potential problem. Why go to all the expense of managing a remote island research centre if all the same species are present as on the mainland?

The Nature Conservancy therefore initiated a programme of eradicating non-native species. It took 14 months to eliminate the feral pigs, using a combination of trapping, helicopter-based shooting and the release of sterilised radio-tagged pigs to locate the stragglers 4.

But getting rid of the bees took a bit longer …

Save the bees, or not

Why get rid of the bees? Surely they weren’t doing any harm?

The introduction of any non-native species upsets the balance (if there’s ever balance) in the ecosystem. The introduced species competes directly or indirectly with those native to the area and can lead to local extinctions.

Jonathan Rosen has described 5 how honey bee swarms, through occupying tree cavities previously used for nesting, probably played a major role in the extinction of the Carolina parakeet.

Pining for the fjords … a stuffed Carolina parakeet (nailed to its perch)

Competition between honey bees and native pollinators has been well studied. It is not always detrimental, but it certainly can be. Furthermore, it is probably more likely to be detrimental in a small, isolated, island ecosystem. For example, studies showed that the presence of honey bees dramatically reduced visitation of native pollinator to manzanita blossoms on Santa Cruz Island.

As part of the larger programme of non-native plant and animal eradication on Santa Cruz Island plans were drawn up in the late 1980’s to eliminate European honey bees. The expected benefits were to:

  • eliminate competition with native bee species (and presumably other non-bee pollinators, though these rarely get a mention 🙁 )
  • reduce pollination of weed species (some of which were also non-native to Santa Cruz Island)
  • facilitate recovery of native plant species that were reliant on native bee pollination
  • provide a ‘field laboratory’ free from ‘exotic’ honey bees in which comparative studies of native pollinators would be possible

Killer bees

After the plans to eradicate Apis mellifera were approved an additional potential benefit became apparent.

There were increasing concerns about the spread of Africanised honey bees which had recently reached Santa Barbara County. Although there was reasonably compelling evidence that swarms could not cross from the mainland (e.g. none of the other Northern Channel Islands had been colonised by bees) there were concerns that the Santa Ana winds might help blow drones from the mainland.

Had these drones arrived they might mate with the non-native but nevertheless local queens resulting in the spread of the dominant genes for defensiveness and absconding. The resulting swarmy, aggressive Africanised bees would cause problems for visitors and scientists working on the island (as they have for visitors to Joshua Tree National Park).

Aerial view of Santa Cruz Island

Although the introgression of African honey bee genes was used as further justification for the eradication it’s not clear whether drones could actually cross 30-40 km of open sea 6.

As an aside, there’s a current project – the amusingly named Game of Drones – running on the Isles of Scilly investigating whether drones can cross the sea between St Agnes, Tresco, Bryher, St Mary’s and St Martin’s. These are, at most, 11 km apart (northern most tip of St Martin’s to most southerly point of St Agnes) but the individual islands are only separated by 1-2 km. I would be surprised if drones could not cross that distance (at least with a strong following wind).

Killing bees

Adrian Wenner and colleagues set about exterminating the honey bees on Santa Cruz Island (Wenner et al., 2009). The process started in 1988 and ended in 2007, and was divided into four phases:

  1. 1988-1993 – location and elimination of feral colonies
  2. 1994-1997 – biological control and colony demise
  3. 1998-2004 – monitoring residual honey bee activity
  4. 2005-2007 – confirmation of the absence of honey bees

None of this is ’beekeeping’ – actually it’s the exact opposite – so I don’t intend to dwell in much detail on the work that was conducted. However, the ’94-’97 phase includes some sobering lessons for beekeepers which are worth discussing.

By the end of phase 1 the team had identified the existence (if not the location) of at least 200 colonies and eliminated 153 of them.

Remember, none of these were managed colonies in hives. They were all feral colonies occupying natural cavities in trees or rocks etc. Each colony was found using painstaking bee lining techniques similar to those described in Thomas Seeley’s book Following the Wild Bees.

Once located, nests were destroyed with methyl chloroform and the cavity sealed to prevent it being reoccupied.

Some colonies could not be accessed; in these cases acephate-laced sucrose-honey syrup baits were used. This organophosphate has delayed toxicity for bees, allowing foragers to return to the colony which in due course dies. This approach had been partially successful in eliminating Africanised bees on the mainland (Williams et al., 1989), but baits needed to be be monitored to avoid killing the other insects they attracted.

The scientists also deployed swarm traps (aka bait hives) and destroyed any swarms that moved in.

Together these interventions reduced honey bee numbers significantly – as monitored by regular observations at pollen- or nectar-rich plants – but did not eradicate them.

Let there be mite

Heavy rains in January ’93 washed out roads on Santa Cruz Island, thereby severely limiting travel around the island. In addition, the previous removal of cattle had resulted in the near-uncontrolled growth of fennel which now formed dense, impenetrable thickets.

Bee lining became impossible and the scientists had to invent more devious strategies to eliminate the residual feral colonies.

The approach they chose involved the introduction of Varroa.

Varroa was first detected in the USA in 1987 (in Florida) and became widespread over the next 5-8 years. Up until 1994 the honey bees on Santa Cruz Island were free of the ectoparasitic mite.

It was likely that they would have remained that way … there was no beekeeping on Santa Cruz Island and the location was too remote for bees to cross from the mainland (see above).

Varroa was already known to have a devastating impact on the health of honey bee colonies (Kraus and Page, 1995). It was also known that, other than its native host Apis cerana (the Eastern honey bee), Varroa did not parasitise other bee or wasp species (Kevan et al., 1991).

These two facts – host specificity and damage inflicted – suggested that Varroa could be used for biological control (‘biocontrol’) on Santa Cruz Island.

Biological control

Biological control or biocontrol is a method of controlling pests using natural mechanisms such as predation or parasitism.

The pest could be any living thing – from animals to bacterial plant diseases – present where it’s unwanted.

On Santa Cruz Island the pest was the honey bee.

In other studies (covered in a previous post entitled More from the fungi 7 ) biocontrol of Varroa has been investigated.

Control of the pest involves the introduction or application of a biological control agent. The key requirements of the latter have already been highlighted – specificity and damage.

Biological control works well when the specificity is high and the damage is therefore tightly targeted. It can be an abject failure – or worse, it can damage the ecosystem – if the specificity is low and/or the damage is widespread.

The cane toad was introduced to Australia to control infestations of greenback cane beetle (a pest of sugar cane). Cane toads were introduced in 1935 and rapidly spread. Unfortunately, cane toads can’t jump very high and so singularly failed to control the greenback cane beetle which tends to 8 stay high up the cane stems.

Female cane toad (not jumping)

But it gets worse; cane toads have a very catholic diet and so outcompeted other amphibians. They introduced foreign diseases to the native frogs and toads and – because of the poisons secreted from their skin – harmed or killed predators that attempted to eat them.


Vertebrates are usually poor biological control agents as they tend to be generalist feeders i.e. no specificity.

But Varroa is specific and so the damage it causes is focused. The likelihood of ecosystem damage was considered low and so the mite was introduced to the island.

Introduction of Varroa

In late 1993 Adrian Wenner caught 85 foraging bees and, to each one, added a single Varroa mite. The bees were then released and presumably flew back to their colonies … taking the hitchhiking mite with them.

Adult mites – the dark red ones you see littering the Varroa tray after you treat with Apivar – are mated females.

Due to their incestuous lifestyle a single mite is sufficient to initiate a new infestation.

The mated adult female mite parasitises a honey bee pupa and produces a series of young; the first is male, the remainder are female. You’re probably reading this before the 9 pm watershed so I’ll leave it to your lurid imagination to work out what happens next (or you can read all the sordid details in Know your enemy).

The presence of honey bees – determined by successful swarm trapping or field observation at likely sites – was then regularly monitored over the next four years.

Swarm numbers remained largely unchanged until 1996 and then dramatically decreased.

Numbers of new swarms on Santa Cruz Island 1991 – 2005. Varroa introduction indicated.

It’s worth noting that during ’94-’96 over 70 swarms were found in natural sites or bait hives. There must have been a significant number of established colonies in 1993 to produce this number of swarms.

But, from 1997 it all stopped … only a single swarm was subsequently found, in a natural cavity in 2002.

Monitoring and confirmation of eradication

From 1998 to 2004 the scientists continued to actively monitor the island for honey bees, focusing on 19 areas rich in natural forage. Although honey bees were found – in decreasing numbers – there were too few to attempt bee lining to locate their colonies.

At the sites being monitored, bees were detected 9, 7, 4, 2 and 1 times respectively in the 5 years from 2000 to 2004. After that, despite continued monitoring, no more honey bees were detected.

The final phase of the project (’05-’07) confirmed the absence of honey bees on Santa Cruz Island.

Whilst, as a scientist, I’m a firm believer that ’absence of evidence does not mean evidence of absence’, as a beekeeper I’m well aware that if there are no scout bees, no swarms and no foragers (when I search in likely places) then there are no honey bee colonies.

Lessons for beekeepers

I wouldn’t have recounted this sorry tale – at least from a beekeeping perspective – unless I thought there were some useful lessons for beekeepers.

There are (at least) three.

The first relates to Varroa resistance, the second to Varroa transmission in the environment and the last to ‘safe’ levels of Varroa. All require some ‘arm waving guesstimates’ 9, but have a good grounding in other scientific studies.

Varroa resistance

There wasn’t any.

At a very conservative estimate there were at least 20 colonies remaining on Santa Cruz Island in 1995. I say ‘conservative’ because that assumes each colony generated two swarms that season (see graph above). In studies of other natural colonies only about 75% swarm annually, meaning the actual number of colonies could have been over 50.

The numbers – 20 or 50 – matter as they’re both much higher than the number of colonies most beekeepers manage (which, based upon BBKA quoted statistics, is about 5).

Whether it was 20 or 50, they were all eliminated following the introduction of 85 mites. Colonies did not become resistant to Varroa.

This all took a few years, but – inferring from the swarm numbers above – the vast majority of colonies were killed in just two years, 1994 and 1995. This timing would fit with numerous other studies of colony demise due to mites.

Wenner estimates that only 3 colonies survived until 2001.

Leaving small numbers of colonies 10 untreated with an expectation that resistance – or even tolerance (which is both more likely and not necessarily beneficial) – will arise is a futile exercise.

I’ve discussed this before … it’s a numbers game, and a handful of colonies isn’t enough.

Varroa spread

Wenner doesn’t elaborate on where the foragers were captured before he added the mites. If I was going to attempt this I’d have chosen several sites around the island to ensure as many feral colonies as possible acquired mites … let us assume that’s what he did.

However, with 85 mites piggybacking on returning workers, and somewhere between (my guesstimated) 20 to 50 colonies, I think it’s highly likely that at least some colonies received none of this ’founding’ mite population.

Yet almost all the colonies died within two years, and those that did not subsequently died with no further intervention from the scientists. We don’t know what killed off the last surviving colonies but — and I know I’m sticking my neck out here – I bet it was the mites.

This is compelling evidence for the spread of Varroa throughout the island environment, a process that occurs due to the activities of drifting and robbing.

If a neighbouring apiary to yours has mites some will end up in your hives … unless you are separated by several kilometres 11.

The transmission of mites in the environment is a very good reason to practice coordinated Varroa control.

One mite is all it takes

But, just as I’ve argued that some colonies may have received none of the founding mites, I’m equally sure that others will have acquired very small numbers of mites, perhaps just one.

And one mite is all it takes.

Without exceptional beekeeping skills, resistance in the bee population or rational Varroa control 12 there is no safe level of mites in a colony.

The more you prevent mites entering the colony in the first place, and the more of those that are present you eradicate, the better it is for your bees.

Here endeth the lesson 😉


It’s worth noting that island populations do offer opportunities for the development of Varroa resistant (or tolerant) traits … if you start with enough colonies. Fries et al., (2006) describes the characteristics of the 13 surviving colonies on Gotland after leaving about 180 colonies untreated for several years. I’ve mentioned this previously and will return to it again to cover some related recent studies.


Fries, I., Imdorf, A. and Rosenkranz, P. (2006) ‘Survival of mite infested (Varroa destructor) honey bee (Apis mellifera) colonies in a Nordic climate’, Apidologie, 37(5), pp. 564–570. Available at:

Kevan, P.G., Laverty, T.M. and Denmark, H.A. (1990) ‘Association of Varroa Jacobsoni with Organisms other than Honeybees and Implications for its Dispersal’, Bee World, 71(3), pp. 119–121. Available at:

Kraus, B. and Page, R.E. (1995) ‘Effect of Varroa jacobsoni (Mesostigmata: Varroidae) on feral Apis mellifera (Hymenoptera: Apidae) in California’, Environmental Entomology, 24(6), pp. 1473–1480. Available at:

Wenner, A.M., Thorp, R.W., and Barthell, J.F. (2009) ‘Biological control and eradication of feral honey bee colonies on Santa Cruz Island, California: A summary’, Proceedings of the 7th California Islands Symposium, pp. 327–335. Available as a PDF.

Williams, J.L., Danka, R.G. and Rinderer, T.E. (1989) ‘Baiting system for selective abatement of undesirable honey bees’, Apidologie, 20(2), pp. 175–179. Available at:


Shook swarms and miticides

Synopsis : Combining a shook swarm with miticide treatment removes most mites in the colony and dramatically reduces DWV levels. The application of this strategy for practical beekeeping is discussed.


Why does Varroa have such a devastating impact on colony health?

Feeding on haemolymph – or the abdominal fat body – by Varroa is probably detrimental. Furthermore, during feeding the mite induces immunosuppressive responses which make the bee both more susceptible to bacterial infections and compromises its nutritional status (Aronstein et al., 2012 1 ).

But if that wasn’t enough, the real damage is caused by transmission of viruses – in particular deformed wing virus (DWV) – from the mite to the developing pupa (and adult worker, as mites probably also feed on newly eclosed workers during the misnamed phoretic stage of the life cycle).

In the absence of Varroa, DWV is seemingly inconsequential for honey bees. Varroa-free colonies – including mine on the remote west coast of Scotland – carry DWV, but virus levels are very low and there is never any overt disease.

But Varroa infested colonies, particularly at this time of the season, often have very high levels of DWV.

Individual pupae parasitised by Varroa can develop stratospherically high DWV levels – reaching over a million times higher levels than seen in unparasitised bees (which can be similar to those recorded in Varroa-free bees). In the mite-exposed pupae the virus levels can kill the developing bees, or result in the characteristic symptoms (primarily deformed wings but also stunted abdomens and discolouration) that give the virus its name.

Worker bee with DWV symptoms

Worker bee with DWV symptoms

But bees not directly exposed to Varroa also have higher DWV levels in mite-infested colonies, particularly as the season progresses. Presumably this is due to horizontal transmission of the virus during larval feeding or trophallaxis.

What happens to these elevated virus levels after the removal of Varroa using a miticide such as Apivar?

Who cares? … I mean, Why could that matter?

The clue is in the section above.

Here it is again:

But bees not directly exposed to Varroa also have higher DWV levels [ … snip … ] presumably this is due to horizontal transmission of the virus during larval feeding or trophallaxis.

If you remove mites the virus levels in the treated adult bees are often surprisingly high 2. That makes sense because the miticide is only removing the vector for the virus … the bees with high levels of virus infection are unaffected.

If, during larval feeding or trophallaxis, these elevated levels of DWV result in yet more bees acquiring high DWV levels then the health of the colony will remain compromised.

The real reason that DWV is a problem for honey bees is that high levels of the virus result in the reduced longevity of bees. This isn’t an issue for the short-lived summer foragers 3. However, reducing the longevity of the winter bees – the so-called diutinus bees – can be fatal for the colony. These are the bees that support the queen in winter, thermoregulating the hive and that rear the first brood of the following season.

Their importance to successful overwintering cannot be overemphasised.

So, the question remains. What happens to the virus levels in the hive after the removal of Varroa?

Of course, the reason I’m posing this question is that we now know … 😉 .

Two easy-to-understand potential outcomes

It seemed to us that there were at least two likely outcomes.

  1. The virus levels in the hive drop very quickly after mite removal (red dashed line, below) and return to some sort of basal level. How quickly and to what basal level? We didn’t know.
  2. Virus levels remain elevated for a long period after Varroa is removed (red solid line, below). How long and to what elevated level? Yes – you guessed it – we didn’t know 😉 .

Of course, biology isn’t binary. There are any number of alternative outcomes … it’s just that those two seemed the most likely.

Two possible outcomes for virus levels after mite removal (black vertical dashed line)

What’s more, they’re the easiest to understand … and to explain.

Why might virus levels remain high if Varroa are removed?

Surely the short lifespan of adult bees means these would soon be lost from the colony … particularly if they have reduced longevity?

Yes, but …

We published a paper a couple of years ago that clearly demonstrated that honey bee larvae fed high levels of DWV became infected with the fed virus. The latter, which we could distinguish from any DWV already present in the larvae, replicated to similar high levels seen in a mite-infested hive (Gusachenko et al., 2020).

This observation perhaps suggested that the second scenario outlined above could occur. All the mites are slaughtered, but the remaining bees with high levels of DWV feed developing brood which consequently also go on to develop high levels of DWV.

Although it’s always good to remove mites this would not be the best outcome for the colony.

Virus quantification

Before I explain how we tested which, if any, of these two possibilities is correct I need to say a few things about virus ‘levels’.

For a variety of reasons I don’t have time, space or energy to explain, we don’t actually count viruses, instead we count copies of the virus’s genetic material (the genome).

All the magic happens in one of these machines – a Bio-Rad CFX96 Touch Real Time PCR system.

The virus genome is made of ribonucleic acid (RNA) and we can therefore use fantastically expensive sensitive and accurate diagnostic methods to measure how many copies are present in a particular sample – for example, in a worker bee, or a developing pupa.

Still with me?


To complicate things a little, we can’t meaningfully express the number of virus genomes present as an absolute number (like one million, or 2,478) because bees are different sizes; larvae are tiny, pupae are bigger, drones are larger still.

In addition, different workers are different sizes, larvae grow etc.

Therefore we express it as genomes per unit of total RNA extracted from the sample. That’s a bit of a mouthful, so we abbreviate it to GE / μg 4.


And finally, to put some numbers on the low and high levels of DWV I discussed earlier, a bee from a Varroa-free colony contains ~1,000 – 10,000 GE / μg (103 – 104) of DWV whereas a pupa parasitised by Varroa regularly has 10,000,000,000 to 1,000,000,000,000 GE / μg (1010 – 1012).

That’s a lot of virus 🙁 .

The experiments

Experiments plural because we did these studies in both 2018 and 2019. ‘We’ are Luke (a then PhD student and now post-doctoral fellow in my laboratory, and the first author on the paper) together with our friends and collaborators, Craig, Ewan and Alan (in Aberdeen) and Giles (in Newcastle). The work was published a few days ago in the journal Viruses and is ‘open access’ (Woodford et al., 2022). This means that anyone feeling particularly masochistic or suffering from sleep deprivation can read all the gruesome details at their leisure.

Not ‘breaking rocks in the hot sun’ … but it sometimes feels like that

The paper covers more than just the one experiment I’m going to discuss here. We also looked at how the virus population changes when mite-free bees become infested with Varroa.

I’ll save that for another post 5  … it’s a good story in its own right.

Most mites are in capped cells

It’s been known for at least three decades that the majority of the Varroa population in a brood rearing colony are within capped cells, feasting on developing pupae.

Nom, nom, nom!

Precisely what percentage of the population is the majority varies a bit 6, but a figure of 90% is often quoted as typical for midseason.

% of mites in capped cells

The percentage of mites in capped cells (this is predicted, not actual data)

We reasoned that the best way to quickly remove all 7 the Varroa in a colony was to combine treatment of the phoretic mites with removal of all the brood … where the majority of the mites are lurking.

And to remove the brood (and associated mites) we conducted a shook swarm.

The shook swarm

Many beekeepers will be familiar with the technique called a shook swarm.

Shook swarm setup. Note Apivar strips in the open hive. Returning foragers already clustering at the entrance

This involves shaking all the adult bees into a new hive with frames containing fresh foundation. All the old frames and brood from the original hive are discarded.

We modified this by including Apivar strips in the hive into which we shook the adult bees.

Shook swarmed colony strapped up for transport … we wait for all the bees to enter the hive before moving it

The ‘shook swarm and miticide’ experiment – which we conducted in May – therefore involved the following steps (we used three strong double brood hives per season, each containing similar amounts of bees and brood):

  1. We quantified DWV in emerging brood in hives in which no Varroa management was conducted.
  2. The queen was removed, caged and kept safe for a few hours.
  3. All adult bees were shaken into a new brood box containing 11 frames of fresh foundation and two strips of Apivar 8.
  4. The shook swarms were relocated to a quarantine apiary.
  5. The queen was returned to the shook swarmed colonies and they were fed ad libitum with syrup to encourage them to draw fresh comb.
  6. Mite drop was recorded at 5 day intervals, increasing to longer intervals, until October when brood rearing ceased.
  7. DWV levels were quantified on a monthly basis from June to October.

As you can see, a very simple experiment.

The results

The mite levels in the ‘donor’ hives were much higher in 2019 than 2018. It’s not unusual to see this type of year to year variation in mite levels. In this instance the mean temperature in February and March 2018 had been several degrees colder than 2019 (remember the Beast from the East?).

The Beast from the East ...

The Beast from the East …

This almost certainly reduced early season brood rearing and so delayed mite replication. Brood rearing was strong by late Spring, but the mite levels in 2018 had yet to catch up.

The results of the experiment in both years were essentially the same. However, for clarity I’ll just present the 2019 data as the mite infestation numbers were so dramatic.

Mite drop after conducting the shook swarm

The cumulative mite drop from Apivar-treated shook swarms ranged from ~500 to ~3000 in the first 5 days. After that the daily mite drop remained at extremely low levels until recording stopped in October.

Mite drop following shook swarm and Apivar treatment

If you assume that only 10% of mites were phoretic at the time we conducted the shook swarm, this means that the total number of mites in some of these colonies was about 30,000. Even the colony with the lowest mite drop may have been hiding an additional 4,500 mites in capped cells.

Remember … the National Bee Unit guidance states that if mite levels exceed 1,000 then treatment is strongly recommended ’to avoid Varroa causing significant adverse effects to the colony’.

I think this part of the study shows just how effective Apivar is. After the first 5 days of treatment the cumulative drop – the Apivar strips still were left in place for 8 weeks – was extremely low for each fortnightly sampling period.

Of course – other than the very high numbers – none of this was particularly surprising. We know Apivar kills Varroa.

Perhaps you’re thinking ”My hives drop more Varroa during the autumn treatment, and for longer.”

When you treat a colony with brood present the mite drop is high in the first few days, but then often remains significant over the next 2-3 weeks while the mite-infested brood emerges. 

In our case, all the mites were on adult bees. By killing these mites in the first few days before there was new sealed brood in the colony we ensured the majority of the new brood did not become infested.

Virus levels before and after the shook swarm

In each colony we sampled a dozen emerging workers, once before the shook swarm and then on a monthly basis until brood rearing stopped. By testing emerging brood we could be certain they had been reared in the test colony, rather than drifting in from elsewhere. 

Before the shook swarm virus levels ranged from 105 to 1010 per worker, with an average of around 5 x 107 GE / μg. For those of you unfamiliar with scientific notation that is 50 million virus genomes.

Virus quantification in individual workers from colonies before and after the shook swarm and Apivar treatment

Strikingly, from the June sample onwards, virus levels dropped to an average of about 104 GE / μg (10,000 virus genomes, a 5,000-fold reduction). This average obscured a range of individual levels, from about 102 to 106.

These reductions are statistically significant … always reassuring 😉 .

The 2018 data showed a similar marked reduction in virus levels. The pre-treatment levels were marginally lower (remember, it was a ’low Varroa’ season), but the levels dropped to an average of only 1,000 GE / μg, a slightly higher fold-reduction and again highly statistically significant.

If you remove the majority of the Varroa the virus levels drop very fast to levels seen in mite-free colonies, or colonies with very low mite counts.

Tough love?

Some beekeepers consider that a shook swarm is tough on the colony. 

I’m not sure I agree.

How and when the shook swarm is done matters a lot.

It can be tough, but it shouldn’t be.

The bees need to draw new comb. For this they need ample feeding, lots of bees and warm weather. By conducting shook swarms on strong colonies in late May and giving them a few gallons of syrup we achieved all this.

‘I know I put that caged queen down here … somewhere’

Doing a shook swarm on a weak colony, too early (or late) in the season or omitting feeding is a recipe for disaster. The colony will struggle to draw comb, its brood rearing will be limited and it will be playing ’catch up’ for the remainder of the year.

Our shook swarmed colonies were booming by late July and entered the winter very strong. All overwintered successfully.

I’d argue that a shook swarm is a lot less tough on a colony than the disease burden caused by thousands of mites … 🙁 .

Why Apivar?

It’s worth emphasising that this was a scientific experiment to investigate the consequences for the virus population of removing almost all of the Varroa.

It was not designed as an example of how a beekeeper would necessarily choose to manage a honey production colony.

Our choice of Apivar was considered and deliberate. Application is straightforward, toxicity – at the levels we used – is undetectable and, critically for these studies, it remains active for weeks.

Apivar strip on wire hangar

Of course, Apivar cannot be used when there are honey supers on the hive 9. Any supers added for the summer nectar flow were not extracted.

Additionally, feeding gallons of syrup when there are honey supers present is also not recommended 😉 .

What else could we have used?

The two obvious choices were MAQS or oxalic acid. Both are effective against phoretic mites, though perhaps less so than Apivar. However, both are only active for a short period in the hive; the treatment period for MAQS is 7 days and the activity of oxalic acid – trickled or vaporised – is probably less than a week.

Neither could be relied upon to slaughter the maximum number of mites, a necessity to produce an understandable result 10. We were additionally concerned about problems with queens or absconding had we used MAQS (both of which would have invalidated the study), and we were keen to avoid the need for repeat treatments with oxalic acid (not least because this is not an approved application method).

With thousands of mites we wanted to ensure that the majority were killed quickly … and, as important, that any that survived the first few days of miticide treatment were also more than likely to be killed later 11.

Application to practical beekeeping

The main aim of this experiment was to investigate the levels of DWV in the colony after the majority of Varroa are removed. However, we were also mindful that the method may be useful for a beekeeper who discovers his/her colony has damagingly high mite levels mid-season, or for someone who inherits abandoned hives with high mite loads.

In these scenarios, assuming there are sufficient bees, some nice warm weather and lashings of syrup available, the combination of a shook swarm and simultaneous miticide application is probably the fastest way to restore colony health.

I am not suggesting that beekeepers routinely conduct a shook swarm and miticide application mid-season. It might not be tough on the colony, but that doesn’t mean it’s not very disruptive. If it’s not needed (because mite levels are well controlled, for example) then it’s a waste of brood … and syrup.

However, there are times when I could imagine it might be useful.

If your primary crop is heather honey you’ll know that the hives sometimes don’t come back from the hills until late-September. That’s late to be applying miticides to protect the winter bees. In an area with an extended June gap (which often starts in May) it might be possible to effectively rid the hives of Varroa in June and have a strong colony to take to the moors in early August.

This is probably a better approach than using a half dose of Apivar in June (as some do) which probably doesn’t kill all the mites anyway, risks contributing to amitraz resistance in the mite population and may result in Apivar strips being left in the hive during the heather flow 12.


Miticides kill mites … big deal.

However, it’s the viruses – in particular deformed wing virus – that kill colonies.

We have now shown that removing the majority of the mites from a colony (including those associated with sealed brood) results in the levels of DWV in the hive dropping very quickly.

The speed with which this happens – four weeks or less – is probably accounted for by the lifespan of the adult bees in the colony following the shook swarm.

This suggests that high levels of virus are not horizontally transmitted or (and this is subtly different) that horizontal transmission, through feeding, of large amounts of virus does not result in elevated levels of virus replication in the recipient bee (larva or adult).

All sorts of questions remain. Would oxalic acid be a suitable replacement for Apivar? How much virus is transferred from a worker to a larva during brood rearing, or between workers during trophallaxis? Is this below a threshold for efficient infection? Do virus levels drop as dramatically when treating a broodless colony (e.g. after caging the queen for three weeks)?

In the meantime just remember that ”the only good mite is a dead mite” … and, if you kill the mites, you also quickly reduce virus levels to a level at which they do not damage the colony.

And a straightforward way to achieve that is to combine a shook swarm with an effective miticide.



Aronstein, Katherine A., Eduardo Saldivar, Rodrigo Vega, Stephanie Westmiller, and Angela E. Douglas. ‘How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis Mellifera’. Insects 3, no. 3 (27 June 2012): 601–15.

Gusachenko, Olesya N., Luke Woodford, Katharin Balbirnie-Cumming, Ewan M. Campbell, Craig R. Christie, Alan S. Bowman, and David J. Evans. ‘Green Bees: Reverse Genetic Analysis of Deformed Wing Virus Transmission, Replication, and Tropism’. Viruses 12, no. 5 (May 2020): 532.

Woodford, Luke, Craig R. Christie, Ewan M. Campbell, Giles E. Budge, Alan S. Bowman, and David J. Evans. ‘Quantitative and Qualitative Changes in the Deformed Wing Virus Population in Honey Bees Associated with the Introduction or Removal of Varroa Destructor’. Viruses 14, no. 8 (August 2022): 1597.