In the first instalment I posted a series of pictures (kindly provided by Calum) of bee houses near Lindau in Bavaria, Germany. The images showed ‘properties’ towards the budget end of the market, offering the bare minimum – a roof overhead and sometimes little more. However, with a bit more time, ingenuity, money and a willingness to ruthlessly exploit the planning laws all sorts of things are possible …
Functional minimalism
Here are a couple of bee houses built to a similar design. A solid-looking shed with a good high ceiling (the pent roof design must offer good headroom over the hives, with ample space for the stacked supers or tall beekeepers) and reasonable levels of lighting by replacing the front wall with translucent corrugated plastic. Calum assures me that there is usually enough light in these bee houses for a proper frame inspection i.e. to see if there are eggs present.
Small corrugated bee house
It’s clear how the bees access the hives which – as last week – simply abut the front wall of the bee house. Since there are no opening windows as such I presume there’s a gap under the eaves through which the bees can escape during inspections.
Large corrugated bee house
Moving up in the world
The bee houses above are a pretty good size, both in terms of the number of hives they can accommodate and the space to work them and for storage. However, with lots of hives inevitably the space becomes more crowded. The following photograph is of the inside of a 30-hive bee house. The majority of the hives are of a design known as a Zander hive, with a few other Deutsch Normal (which, as Calum says, “is funny as there is no standard in Germany”).
Crowded house
The roof lights provide pretty good illumination (they would be a welcome addition to my own bee shed) which makes it much easier to see the huge amount of additional ‘essentials’ that beekeepers accumulate.
Bee house and bench seat
And before we move on to the Rolls-Royce† of bee houses here’s another one (above), this time from the outside. I particularly like the sheltered porch area and bench seat, perfect for relaxing on with a cuppa after working up a sweat.
A luxury bee house
My bee shed starts to look rather plain and dowdy when compared with the nicely decorated side panels in the photograph above. All of the bee houses shown so far have provided basic weather protection together with more or less comfort for the beekeeper and space for storage or relaxation.
The final bee house is spectacular. It houses 40 colonies and has an extractor (centrifuge) room with an adjacent dining room and living room. Upstairs there is space for a flat … “planning laws don’t really apply to beekeepers in Germany – as the need to keep them very happy is recognised”, says Calum).
Luxury bee house
Can you imagine building something like that in the association apiary?
Finally, here’s a close-up view of the entrances to this splendid building. The windows are hinged from the top and the area under the eaves is very shaded. It’s not clear whether the bees that fly during inspections escape through the open windows (in which case hinging them at the bottom would almost certainly be more effective as bees always crawl upwards) or if they exit somehow above the windows.
Hive entrances and windows
The landing boards are painted to try and reduce drifting which might be a major issue with colonies packed so close together. Some of the brood boxes are also decorated with flowers or motifs to help the bees returning from orientation flights find the correct hive. There are a couple of wasp traps fixed to the front of the bee house, one just out of shot and one about 2/3rd the way along in the picture above.
That’s almost the last of this brief review of German bee houses from the photos that Calum kindly sent me. I’m saving one back for another posting which will appear sometime in the future. I’ve also received some additional images of bee houses from another part of Germany and northern France which I’ll post in due course.
I’m off to check the Scottish planning laws …
† Actually Calum called this the ‘Mercedes’ of bee houses. This either reflects a German opinion of the relative merits of Daimler Benz Mercedes and Rolls-Royce (who are actually owned by BMW these days), or it might suggest that there are even more luxurious bee houses out there …
After a bit more than a year of use I’m convinced of the benefits of a bee house or shed. They provide protection for both the hives and the beekeeper, enabling inspections in otherwise borderline conditions and – at least from my experience this season – earlier colony build-up and longer brood rearing. Not everyone has the luxury of being able to synchronise colony inspections to idyllic “shirtsleeve” days, with warm sunshine and light winds, either due to work commitments or (in our case) because we need brood at particular times of the week for research.
Learn from others and your own mistakes
My bee shed is a simple re-purposed good quality garden shed on a solid base with some holes cut in the walls and custom-built windows. I’ve discussed the perceived and actual benefits of the bee shed previously, and described the design (and evolution) of the hive entrances and shed exits used by the bees. The functionality was achieved by discussion with contributors to the SBAi beekeeping forum, further informed by a tour of a ‘shed’ owned by a respected and experienced UK beekeeper, and with a bit of trial and error.
Despite being broadly satisfied with my current setup I’m always interested to see how others have approached the problem of providing both shelter and access. I was therefore very interested to receive a series of photographs of bee houses from Calum, a regular reader and contributor, who lives in Lindau, Germany. With Calum’s permission I’m posting these as they might also be of interest to other readers.
A simple shelter from the elements
Lindau is in Bavaria, on the northern shore of Lake Constance (Bodensee). The climate there is “mild and generally warm and temperate”, with average temperatures of 9.1°C and rainfall of about 1133mm (according to climate-data.org). The average temperature in the warmest (July) and coldest month (January) is 18.7°C and -0.7°C†. This gives an idea of the type of conditions these bee houses were designed for. Calum tells me that there are at least 30 he’s aware of within 10km of Lindau.
This simple shelter provides some protection for the beekeeper working the colonies together with an extended porch area to protect the hive entrances – presumably from snow and sun. The hive entrances simply line up with a gap between the bottom of the front wall and the floor, that doubles as a landing board. I particularly like the solitary bee nestbox on one of the end walls of the shelter.
Rear view
Front left
Front right
Here’s another that provides even less shelter for either the beekeeper or the hives, consisting of nothing more than a roof and end walls. Nevertheless, the roof looks pretty sturdy to keep the snow off and the hives are oriented to catch the morning sun.
Barely a bee house …
Three walls and a roof
Finally, here’s something a little more substantial. This is the bee house that Calum inherited when he started out, complete with the sign which I think reads “Vorsicht Stechgefahr Bienen” (Caution danger stinging bees). Clearly this was a rather robust shed originally. Apparently it was built without the front wall making adding/removing hives a simple task – no need to negotiate the door. Security can be provided by installing a couple of planks from the inside that protect the hives. The hives are higher than on a conventional stand, making inspections of a single/double brood box comfortable, but making the removal of supers from the top of the pile a precarious occupation.
Calum’s bee house
In the next instalment (though not next week) I’ll post some rather grander designs, including one with integral dining and living rooms …
† For comparison, I live in Fife which enjoys about half the rainfall of Lindau and has an annual temperature average of 8.3°C and January and July averages of 2.5°C and 14.7°C respectively.
The bee shed is a new development in my beekeeping. It was built to house the colonies we need for our work on deformed wing virus. This requires access to larvae and pupae for as long as possible during the year … it therefore seemed worthwhile trying to keep colonies in a sheltered environment in the hope that the queen would rear brood for longer. An additional benefit is that colonies can be opened in poor weather. Due to the timing of the development cycle of bees we almost always have to harvest larvae or brood on a Monday, irrespective of the weather. I’ve previously had to open colonies in the middle of a thunderstorms, getting drenched in the process. The ‘operator protection’ offered by the bee shed will make this a much less unpleasant task in inclement weather (at least for the beekeeper 😉 ).
Location, location …
Bee shed …
The shed is situated in a sheltered corner of thin woodland, with the long side facing approximately south-east to catch the morning sun. The spot is a real sun trap and well sheltered from prevailing winds. There is water nearby and a wide variety of forage available within flying distance. On a warm sunny morning it’s an idyllic spot. However, not everything is perfect. Access is a bit limited and there’s no electricity, so I’ll need to use my Kelly Kettle for making a brew. The shed is built onto a solid slabbed foundation that is pretty-much level so I don’t need to worry about levelling the hives when using foundationless frames which must hang vertically. The shed was built by Gillies and Mackay of Errol and the exterior is ~19mm thick T&G boards. They built it with four window openings all down one side … in retrospect I should have asked for a couple of additional openings on the opposite side as well and I may yet take a jigsaw to the wall if needed. Other than fitting metal edging all around the base to prevent little critters getting underneath, it’s a pretty-much ‘off the shelf’ (albeit custom-built if that isn’t a contradiction) 12′ x 8′ shed, liberally painted with something not particularly environmentally friendly (Sadolin Quick Dry woodstain I think). The fenced off apiary site has space for a further 6-8 colonies, with additional space for storage of spare nuc boxes, supers and all the other paraphernalia that beekeeping requires.
Hive stands
Feet through the floor …
I’ve already briefly described the hive stands. These are completely unexciting. There are two, end to end, down the long-side of the shed. The advantage of two separate stands is that there are fewer colonies sharing the stand to get disturbed during inspections. I considered individual stands but realised that this would prevent the addition of ‘infill’ nucs should we need them. Actually, not really infill, but there’s space at either end for a 5/6 frame poly nuc. The only additional design feature of the hive stands is that the legs reach through the floor of the shed and stand directly on the slabbed foundations. This again reduces vibrations as I potter around in the shed opening other colonies … or brewing tea. This was a suggestion from an experienced bee shed user and contributor to the SBAi forums for which I’m very grateful. I slightly misjudged the height of the stands during design/installation … this has necessitated additional pieces of wood being added along the top runners. Without these the hive entrances were in line with the thinnest part of the wall (the T&G), rather than the thicker centre of the plank. D’oh! In due course I’ll add additional wood along the rails of the stand, incorporating Correx sheets underneath the colonies to catch debris that would otherwise fall onto the floor. These won’t be proper Varroa trays as they’ll be well separated from the open mesh floors, but simply a way of keeping hive rubbish off the floor. The hive floors we use were built by Pete Little and have a particularly well designed Varroa tray that is almost perfect for sealing off the bottom of the colony, both when counting mite drop and during oxalic acid sublimation.
Entrances
Correx …
Many bee sheds I’ve seen have rather fancy entrances with sealable doors on the outside, the ability to add mouseguards and all sorts of entrance reducers. I decided that, a) I don’t know yet what features I need so can’t add them from the start and b) I can cobble-together almost anything from Correx if needed. I therefore opted for a simple hole through which I pushed some spare rectangular extractor hood ducting. This abuts the front entrance slot of the hive – I use standard floors on the hives in the shed, rather than my preferred Kewl floors. The ducting is a pretty tight fit through the side of the shed, so isn’t fixed in place. It rests on a small piece of softwood on the front of the hive floor, with the remainder of the hive entrance i.e. “outside” the ducting, sealed off with a piece of Correx nailed in place to both the bottom of the brood box and the top of the hive floor. The Correx has a flap that lifts up to accommodate the ducting. When I move the hives I simply pull them away from the ducting and close the flap.
Ducting …
The ducting is only about 12-14cm in length. I didn’t want rain to be driven into the hive, or for water to run down the smooth-walled ducting. The ducting is therefore inclined upwards towards the hive entrance at about a ~15° angle. Additionally, there’s a ~1cm ‘step’ between the floor of the ramp and the hive entrance. I reckoned that this arrangement wouldn’t interfere with removal of corpses, but would maximise protection from the elements. I sprayed the inside of the outer end of the ducting with some gloss paint and liberally sprinkled it with sand to provide a good grip to bees landing. To seal off the exposed edges of the ducting from the outside I added an external entrance ‘archway’ (see picture) with the inevitable Correx landing board screwed on underneath it. I can add entrance reducers (Correx … no surprises there 😉 ) as needed simply by pinning them in place to the ‘archway’. The entrance was pretty-much bodged together (a speciality of mine) … we’ll see how they get on with them over the course of the season, make running modifications as needed and/or design improvements for the the future.
Exits
Bee shed window …
Opening a hive inevitably results in bees flying up and out. I’ve seen a variety of solutions to allow bees to exit bee sheds. These include:
clear roof vents so the bees are attracted up to the roof apex of the shed and can then escape through the vent – if built properly this also hugely increases the available light inside the shed, but does require major roof modifications. These were beyond the budget and I was concerned about maintaining a fully weathertight structure, so didn’t choose this option.
windows that are hinged along the bottom edge and that are left open a couple of inches during inspections. Bees attracted to the light (it’s always pretty dingy in the shed when compared to daylight) walk up the window and fly from the gap. Although the shed was pretty good value, the custom-built windows offered by Gillies and Mackay weren’t … so this option was abandoned as well.
Let there be light …
I wanted a no-moving-parts solution. Therefore, the windows consist of two sheets of Perspex with the outer sheet being 2cm short of the window frame height. This means that bees inside the shed that fly towards the light and crawl up the window eventually reach a gap from which they can fly out. To prevent ingress of rain and draughts the upper gap is overlapped by a short inner pane, perhaps 15cm in height, separated from the outer pane by about 20mm. This arrangement appears to work well. It means there are no moving parts to go wrong, no windows to forget to open (or close afterwards), no thick window frame to further reduce the lighting and yet still provides reasonable weather protection. The inner windows are screwed in place with the outers being secured with waterproof sealant.
Still to do
A combination of flooding, the short day lengths, an arm injury, lethargy and lousy organisation (as a previous student of mine once said, “He couldn’t run a bath”) mean that there are a number of tasks to finish before the season proper starts. These range from adding guttering and storage racks at the rear of the shed to taking a couple of deckchairs over for warmer days. Most importantly I need to prepare additional entrance holes for some nucleus hives. My preferred poly nucs fit flush to the sidewall of the shed (with a bit of bodging) and so should not need the same sort of entrance tunnel. I’m simply going to bore a wine-cork sized hole through the wall … this should be easy to defend and, if needed, seal with a cork. Note to self – drink wine.
But what about swarm control … ?
And all sorts of similar beekeeping questions. I’ve not a Scooby. The classic ‘artificial swarm’ (Pagden method) is out for obvious reasons … this isn’t an issue as it’s not a method I use very often. The two choices would be the vertical Demaree method which I quite like (but which is better with an upper entrance that can’t be provided inside the shed) or simply removing the queen to a nucleus hive. It will be interesting to see what works best. However, since we harvest brood for research during the season these colonies may not get strong enough to swarm until the queen gets pretty old and tired. In the same vein, I don’t expect these colonies to be bulging at the seams and piling in the nectar all season, but – just in case – there’s headroom for about 4 supers 🙂 . It’s not likely that other standard beekeeping activities will be problematic … requeening, uniting, feeding, Varroa treatments and standard inspections should all proceed as required (just out of the rain and wind). The installed colonies are currently in hives identical to those I’d use outside … however, this is likely to change as there’s little need for a roof and so I’m likely to replace the crownboard-insulation-roof with a simple sheet of thick polythene with a block of Kingspan insulation on top.
First impressions last
Perspex crownboard …
The first hives were installed in October last year, so I have almost no experience yet in handling colonies ‘indoors’. On a sunny day the lighting is good enough to see eggs and larvae but I might have to consider installing lighting for late-afternoon apiary sessions. We’ve had a reasonably warm, wet winter – very wet – and the colonies look strong at the time of writing (the image on the right is not representative as it was taken some time ago). Colonies within the shed are significantly more active than colonies headed by sister queens outside the shed in the same apiary. However, there may still be genetic differences between the colonies that account for this. This increased activity is twofold – more bees flying on warm days and more hive debris (presumably due to brood being reared and stores uncapped) on the Varroa trays. Only once the hives are opened will it become clear whether these apparent signs of increased activity really reflect stronger colonies that are rearing more brood.
What is clear though is that on days borderline for flying – the sort of day when only the odd bee ventures out – the colonies in the shed have no more bees flying than those outside. On these sorts of days a peek through the perspex crownboards shows that the clusters within the bee shed are ‘looser’, with more bees wandering about in the hive corners and with the bees spread across more frames. However, this increased activity inside the hive doesn’t appear to translate into more bees venturing out if the weather isn’t really good enough.
The precarious scaffolding plank bridge that straddles the burn near my apiary got partially washed away during the heavy rainfall and flooding over the last few months. As the bee season is fast approaching and I need to shift some additional equipment and colonies to the apiary, I took advantage of a break in the weather to rebuild the bridge. Or, more accurately, put the planks back in place … ‘build’ makes it sound more than a 20 minute job, which is what it took. It’s a natural crossing point over the burn, as indicated by the roe deer hoof prints (‘slots’) in the soft mud on either side. Whether they’ll risk using the repositioned bridge remains to be seen. Whether it’ll survive discovery by the H+S people also remains to be seen 😉
Before …
After …
Roe deer slots …
The apiary occupies a sheltered and sunny corner of open woodland, access is restricted – not least because the bridge is still pretty precarious – and it’s not possible to get a car particularly close to the site. Therefore everything of any size has to be wheeled there on Buster, my (t)rusty hivebarrow. It’s easy to jump across the burn – after all, the deer do it all the time – but I need the bridge for the hivebarrow.
The apiary includes my bee shed, a 12 x 8 foot sturdy shed built onto a solid, level, slabbed foundation. The side of the shed that gets the morning sun has large bee-friendly windows. Inside, there’s a secure set of hive stands that are fixed, not to the shed, but to the underlying slabbed foundation. This ensures that vibrations caused by me wandering around inside the shed aren’t transmitted to the bees by the continued flexing of the floor. If you jump and land heavily on both feet in the shed the bees give a small roar of recognition/agitation. However, since I don’t normally pogo around my hives this isn’t an issue … during normal bumbling around the colonies they’re silent.
Feet through the floor …
I’m new to bee sheds, so am still learning … time will tell whether the modifications I’ve made to help house the hives – largely suggested by generous contributors to the SBAi, gleaned from the internet or simply guessed at – are suitable. For example, the hive floors are currently bolted onto the hive stands to avoid my inevitable engulfment in escaped bees if one were to get bumped inadvertently. In some bee sheds I’ve read the hive entrances are simply lined up with a hole in the shed wall. However, for a variety of reasons I and others want to be able to work in the shed without beesuits, so I have entrance tunnels that connect the floor to the shed wall.
Winter colony activity …
There are currently two colonies in situ. Both appear to be doing fine. Despite the temperature being appreciably warmer inside the shed (it’s unheated, but quickly warms once the sun is on it) they don’t fly if the outside temperature is too cold. On very cold days the colonies are tightly clustered. However, there are days when bees outside are clustered very tightly, but those inside are in a far looser mass. There’s also more evidence of activity within the colony – in terms of stores being uncapped and brood rearing. This isn’t to say that all similarly housed colonies would behave the same … the differences I see in the small number of colonies I’ve looked at might simply be due to genetic differences between the bees. Examination of the Correx Varroa boards shows the expected ‘stripes’ of wax granules from brood rearing and you can even see a few eggs that have been discarded and dropped through the OMF. The Varroa counts are very low. These colonies were treated by vaporisation about 8 weeks ago and have only dropped a couple of mites since then. However, I appreciate that mite drop counts are notoriously unreliable, but at least there aren’t hundreds 😉
Insulation …
Several of my colonies had still not finished with their fondant blocks by late into November. These blocks had been housed over a queen excluder in an empty super, underneath the usual insulated perspex crownboard. To avoid a dead space above the colony I filled the super with some of that ‘inflated’ sealed plastic bag wrapping often supplied with packages from Amazon or similar mail-order suppliers. Bubblewrap can be used in the same way.
Far better this stuff is used than just dumped into a landfill …