Tag Archives: foundationless frames

Droning on

This post was supposed to be about Varroa resistance in Apis mellifera – to follow the somewhat controversial ‘Leave and let die’ from a fortnight ago. However, pesky work commitments have prevented me doing it justice so it will have to wait for a future date.

All work and no play …

Instead I’m going to pose some questions (and provide some partial answers) on overwintering mites and the use of drone brood culling to help minimise mite levels early in the season.

Imagine the scenario

A poorly managed colony goes into the winter with very high mite levels. Let’s assume the beekeeper failed to apply a late summer/early autumn treatment early enough and then ignored the advice to treat again in midwinter when the colony is broodless.

Tut, tut …

The queen is laying fewer and fewer eggs as the days shorten and the temperature drops. There are decreasing amounts of the critical 5th instar larvae that the mite must infest to reproduce.

At some point the colony may actually be broodless.

What happens to the mites?

Do they just hang around as phoretic mites waiting for the queen to start laying again?

Presumably, because there is nowhere else they can go … but …

What about the need for nurses?

During the Varroa reproductive cycle newly emerged mites preferentially associate with nurse bees for ~6 days (usually quoted as 4-11 days) before infesting a new 5th instar larva.

Mites that associate with newly emerged bees or bees older than nurse bees exhibit reduced fecundity and fitness i.e. they produce fewer progeny and fewer mature progeny 1 per infested cell.

I’m not aware of studies showing the influence of the physiologically-distinct winter bees on mite fecundity.

Similarly, I’m not sure if there are any studies that have looked at the types of bees phoretic mites associate with during the winter 2, or the numbers of bees in the colony during November to January 3 that might be considered to be similar physiologically to nurse bees.

Whilst we (or at least I) don’t know the answer to these questions, I’m willing to bet – for reasons to be elaborated upon below – that during the winter the fecundity and fitness of mites decreases significantly.

And the number of the little blighters …

Mite longevity

How long does a mite live?

The usual figure quoted for adult female mites is 2-3 reproductive cycles (of ~17 days and ~11 days for the first and subsequent rounds respectively). So perhaps about 40 days in total.

But, in the absence of brood (or if brood is in very short supply) this is probably longer as there is data linking longevity to the number of completed reproductive cycles i.e. if there is no reproduction the mite can live longer.

It is therefore perhaps reasonable to assume that mites should be able to survive through a broodless period of several weeks during midwinter. However, remember that this increases the chance the mite will be removed by grooming or other physical contacts within the cluster, so reducing the overall population.

Spring has sprung

So, going back to the scenario we started with …

What happens in late winter/early spring when the queen starts laying again?

Does that 5cm patch of early worker brood get immediately inundated with hundreds of mites?

If so, the consequences for the early brood are dire. High levels of mite infestation inevitably mean exposure to a large amount of deformed wing virus (DWV) which likely will result in precisely the developmental deformities you’d expect … DWV really “does what it says on the tin”.

Worker bee with DWV symptoms

Worker bee with DWV symptoms

My hives are carefully managed to minimise mite levels. I don’t really have any personal experience to help answer the question. However, in colonies that have higher (or even high) mite levels I don’t think it’s usual to see significant numbers of damaged bees in the very earliest possible inspections of the season 4.

My (un)informed guess …

My guess is that several things probably happen to effectively reduce exposure of this earliest brood to Varroa:

  1. Varroa levels in the colony drop due to the extended winter phoretic phase. More opportunities for grooming or similar physical contact (perhaps even clustering) increase the loss of mites.
  2. Mites that remain may have reduced access to brood simply due to the mathematical chance of the bee they are phoretic on coming into contact with the very small numbers of late stage larvae in the colony.
  3. Mites that do infest brood have reduced fecundity and fitness and may not rear (m)any progeny.

There are a lot of assumptions and guesswork there. Some of these things may be known but discussions I’ve had with some of the leading Varroa researchers suggest that there are still big gaps in our knowledge.

OK, enough droning on, what about drones?

Back to the imagined scenario.

What happens next?

Well, perhaps not next, but soon?

The colony continues to contract (because the daily loss of aged workers still outnumbers the daily gain of new bees) but the laying rate of the queen gradually increases from a few tens, to hundreds to a couple of thousand eggs per day.

And the colony starts to really expand.

And so do the mite numbers …

Pupa (blue) and mite (red) numbers

And at some point, depending upon the expansion rate, the climate and (probably) a host of factors I’ve not thought of or are not known, the colony begins to make early swarm preparations by starting to rear drones.

Drones take 24 days to develop from the egg and a further 12-16 days to reach sexual maturity. If the swarming period starts in the first fortnight of May, the drones that take part were laid as eggs in late March.

And drone larvae are very attractive to Varroa.

9 out of 10 mites prefer drones

Varroa replicates ‘better’ in association with drone pupae. By better I mean that more progeny are produced from each infested cell. This is because the drone replication cycle is longer than that of worker brood.

The replication cycle of Varroa

The replication cycle of Varroa

On average 2.2 new mites are produced in drone cells vs only 1.3 in worker cells 5. From an evolutionary standpoint this is a significant selective pressure and it’s therefore unsurprising that Varroa have evolved to preferentially infest drone brood.

Irrespective of the mite levels, given the choice between worker and drone, Varroa will infest drone brood at 8-11 times the level of worker brood 6.

Significantly, as the amount of drone brood was reduced (typically it’s 5-15% of comb in the hive) the drone cell preference increased by ~50% 7.

I hope you can see where this is now going …

Early drone brood sacrifice

As colony expansion segues into swarm preparation the queen lays small amounts of drone brood. These cells are a very small proportion of the overall brood in the colony but are disproportionately favoured by the mite population.

And the mite population – even in a poorly managed colony – should be less (and less fit) in the Spring than the preceding autumn for reasons elaborated upon above (with the caveat that some of that was informed guesswork).

Therefore, if you make sure you remove the earliest capped drone brood you should also remove a significant proportion of the viable mites in the colony.

Drone brood is usually around the periphery of the brood nest, along the bottom of frames with normal worker foundation, or on the ‘shoulders’ near the lugs. The drone brood is often scattered around the brood nest.

As a consequence, if you want to remove all the earliest capped drone brood you have to rummage through the frames and ‘fork out’ 8 little patches here and there.

It can be a bit of a mess.

Is there an easier way to do this?

Drone cells

Beekeepers who predominantly use foundationless frames will be aware that they usually have significantly more drones (and drone comb) in their colonies than equivalent sized colonies using embossed worker foundation.

Depending upon the type of foundationless frames used the drone comb is drawn out in different positions on the frames.

Horizontally wired foundationless frames can be all drone brood or a mix of drone and worker. However, the demarcation between the brood types is often inconveniently located with regard to support wires.

In contrast, foundationless frames constructed using vertical bamboo supports are often built as ‘panels’ consisting entirely of drone or worker comb.

Drone-worker-drone

Drone-worker-drone …

Which makes slicing out one or more complete panels of recently capped drone brood simplicity itself.

There are no wires in the way.

You can sometimes simply pull it off the starter strip.

Drone brood sacrifice

Check the brood for Varroa 9, feed the pupae to your chickens and/or melt out the wax in your steam wax extractor.

The bees will rapidly rebuild the comb and will not miss a few hundred drones.

They’ll be much healthier without the mites. Importantly, the mites will have been removed from the colony early in the season so preventing them going through repeated rounds of reproduction.

This is the final part of the ‘midseason mite management‘ triptych 10, but I might return to the subject with some more thoughts in the future … for example, continuous culling of drone brood (in contrast to selective culling of the very earliest drone brood in the colony discussed here) is not a particularly effective way of suppressing mite levels in a colony.


 

 

 

 

 

Foundationless frames update

A few weeks ago I described foundationless frames built with vertical bamboo supports. In a related post on starter strips I explained that I was going to compare homemade (dipped) wax strips with simple wooden strips or laths, the latter made from tongue depressors.

Here’s an update on the progress the bees have made with these frames so far.

Disclaimer

This trial wasn’t properly scientific, it was poorly controlled, it was conducted over several weeks in two apiaries with bees from a variety of sources. As a scientific study it was deeply, deeply flawed. I know a bit about these things. You have been warned. Caveat emptor.

Starter strips – KISS is better

Essentially I could see no difference in the acceptance rate (effectively the rate at which bees started comb) between the three types of starter strips tested. These were homemade wax strips or wood (tongue depressors) strips glued to the top bar with adhesive and either left bare or coated with molten wax.

Some of the frames I’ve been using even had one of each of these types of starter strips in each of the three ‘panels’ (see below) on the frames.

Take your pick ...

Take your pick …

Frames like these were used in hives with packages or shook swarms and were readily accepted by the bees and rapidly drawn out (either with a good flow of nectar from the OSR, or 1:1 syrup made up from leftover fondant). By the time I went to check all three ‘segments’ were started in the hives. I didn’t monitor which was the first to be used … I’d have needed to be inspecting hourly and I have a life (and job and family).

As far as I could tell there appeared to be no preference to the type of starter strip used.

Just starting out ...

Just starting out …

Of the 20-30 frames like this used so far this season, all have remained attached during inspections, whether started on wood or wax. I’m reasonably careful handling frames, but I reckon these could cope with all but the most cack-handed beekeeper. Colonies in the bee shed have been exposed to temperatures in the mid-high 30’s (°C for overseas readers) with no adverse effects, other than the expected softening of comb at high temperatures.

Conclusion – since the outcome was indistinguishable there seems no reason not to use simple unwaxed wooden strips as starter strips in foundationless frames. The KISS principle applies here.

There are two or three additional benefits from the observation that simple wooden laths are perfectly acceptable as starter strips; 1) there’s no need to go through the interminable and messy process of making your own wax starter strips, 2) there are no foundation costs involved, 3) the frames can be recycled through a steam wax extractor without damaging them.

Bamboo … zled

Foundationless frames built with vertical 4mm bamboo skewers are easy and inexpensive to construct. I’ve used about 50 of these already this season with almost no problems. The bees usually avoid the vertical skewers until the comb is nearly completely built. Often this is well after the queen has started laying in the upper section of the frame or the bees start to store honey in the upper cells.

Foundationless triptych ...

Foundationless triptych …

It’s not until the frames are well occupied with brood or nectar that the vertical gaps on either side of the bamboo skewers are usually filled in§. Until then the comb is only attached at the underside of the top bar. This is a potential weakness … until the comb is completed there is little lateral support or stability.

Handling the frames, particularly in hot weather, requires some care. I found myself going through the same frame handling methods I was taught several years ago – turn through 90°, rotate around the top bar, turn back through 90° etc. to inspect the other side of the (now inverted) frame.

Re-reading that it still doesn’t sound quite correct, but anyone who has attended a winter training course for new beekeepers will be familiar with what I’m talking about.

Nearly completed ...

Nearly completed …

Once the gaps are filled the comb is pretty robust and can be (mis)handled with the usual amount of care used for comb built on wired foundation. In addition, you can smile smugly to yourself as the woodwork was probably built from second quality frame partsΔ, there were no foundation costs involved and the wax is clean and untainted by residues.

Worker, drone, worker … worker, worker, drone

One of the striking features of hives containing a significant amount of foundationless frames is that the bees draw significantly more drone comb than is usually found. On standard foundation the bees squeeze drone comb into the corners of the frames, often making the comb uneven and misshapen. On foundationless frames they draw lots more, but the comb is generally not as misshapen.

If you use horizontally wired foundationless frames there will be large swathes of the comb dedicated to rearing drones. This may be intermixed with worker comb.

In contrast, frames built with vertical bamboo skewers tend to be drawn in thirds … with each third being ‘dedicated’ to either (or largely) worker or drone brood.

In the ‘Foundationless triptych …’ image above the left and central panel are largely worker comb, with the right being drone. In the image below the left and right panels start as worker but soon transition to all drone comb, the central panel is worker.

Drone-worker-drone

Drone-worker-drone …

I see this as a very significant advantage of this type of foundationless frame. Since the demarcation between drone and worker brood is pretty clear and since there are no wires to be cut, it will be a simple task to excise the unwanted segment (whether drone or worker) as required. We do this type of manipulation all the time when harvesting brood from our research colonies and the bees rapidly rebuild the damage if there is a nectar flow. It does not seem to result in weirdly shaped brace comb appearing throughout the hive.

Conclusion – bamboo skewers make good supports for foundationless brood frames. Before being completely drawn the frames need to be treated a little more gently than those with horizontal (wire or monofilament) supports which are more rapidly incorporated into comb. In my view the robustness and ease of construction using bamboo skewers outweighs this transitory lack of support.

Beautifully simple and simply beautiful

I’ve said it before, but it bears repeating. Freshly drawn foundationless comb is really lovely stuff …

Beautiful newly drawn comb ...

Beautiful newly drawn comb …


† The KISS principle (keep it simple, stupid) dates back to the early 1960’s. It was originally a naval design term and was an expression meaning that most systems work better if they are kept simple rather than being made more complicated. Simplicity was therefore the design goal and unnecessary complexity was to be avoided.

‡ As a comparison, 1000 tongue depressors cost about £17 delivered. This is sufficient for well over 300 frames that are usable in perpetuity, or at least as long as the joints remain intact. In parallel to frames made with homemade foundation I have also used another 20-30 with commercial foundation. These worked as well, or badly, as any of the other starter strips used.

Foundationless frame ...

Foundationless frame …

§ It’s interesting (to me at least) that vertical 4mm supports are avoided whereas horizontal 1mm monofilament is readily incorporated – for example, compare the image on the right with those above. Is it the thickness or the orientation that makes them acceptable? How would the bees cope with very thin vertical supports? Alternatively, would they readily build comb ‘down’ through 4mm horizontal bamboo skewers? The latter is tricky to test as the longest skewers I’ve been able to find (35cm) are too short for a National frame. However, the ability to more willingly incorporate a thinner vertical supports can easily be tested and will be something I may well investigate next season. I suspect it’s the thickness of the ‘barrier’ rather than the orientation that’s important. Very thin wooden skewers would be flimsy (even if they were available), but there are a variety of other materials that could be tested.

Δ In my experience, other than a few poorly placed knots, second-quality frames are perfectly acceptable for building foundationless frames. One of their few failings, at least from some purchased from Thorne’s, is that the foundation channels in the side bars are sometimes off centre. Obviously, this is of no relevance when preparing foundationless frames.

 

Starter strips

You should expect to replace about one third of the brood frames per season to help offset the build-up of pathogens in drawn comb. The general advice is to “rotate these frames out” of the colony … meaning gradually move them to the outside of the broodnest and then remove them. Obviously you need to replace them and so need new frames every year. Alternatively you could change the frames en masse by doing a Bailey comb change or a shook swarm … again meaning you need more new frames every year. The National Bee Unit have published a document on Replacing Old Brood Comb (PDF). Remember that old, manky, black combs can be used in bait hives.

Scaling up and shelling out

If you only have one or two colonies it’s easy and inexpensive enough to assemble these frames as and when they’re needed. With significantly more colonies it makes sense to build them in winter ready for the season ahead. This is what I do. With the colony numbers I have, a few bait hives, some small scale queen rearing and nuc production I need 100-200 new frames a year.

Based on Thorne’s list prices, 10 DN5 frames and foundation will cost £28.80, 40% of which is the cost of the foundation 🙁  You can reduce these costs significantly by buying ‘second quality’ frames in bulk in the annual (or more frequent) sales. You can reduce the outlay even further by using foundationless frames and preparing your own starter strips (the ‘guides’ to help the bees build parallel comb). By my estimates, 100 second-quality DN5’s prepared with your own starter strips should cost abut 72p per frame. That’s more like it!

Dodgy foundation

Another reason to consider foundationless frames is potential problems with purchased foundation. There are reports of contaminants (specifically with stearin and palmitic acid) in some foundation that result in a very spotty brood pattern. These have primarily been in Belgium and the Netherlands. However, there’s an international trade in beeswax and you probably cannot be sure where the stuff you purchased originated. There’s an earlier thread on the BKF that also reports foundation problems in the UK.

I’ve always bought premium (though not organic) foundation from Thorne’sKBS or Maisemore’s and haven’t had any problems. Nevertheless, using foundationless frames means your drawn comb will be as contamination-free as the environment allows.

Freshly drawn comb

Freshly drawn comb …

Waxing lyrical

I’ve recently posted a description of how to make foundationless frames using bamboo BBQ skewers to provide lateral structural rigidity. The gaps between the skewers is ~11cm. This was an ideal opportunity to prepare my own starter strips as I wouldn’t need a huge vat of molten wax to make an aesthetically-pleasing full frame-length strip.

You can extract wax from cappings, from brace comb built by the bees and by recycling old frames (though you get less and less wax back as frames are used for repeated brood cycles). I use a homemade (i.e. bodged) steam wax extractor to do this. It’s a smelly and slightly sticky job that’s best done in the winter to avoid the attention of the bees (and neighbours). The wax needs to be filtered to remove the lumpy bits but certainly doesn’t need the preparation required to produce exhibition-quality candles. I’ve previously described how I process and clean recovered wax.

A simple Google search will uncover lots of videos and websites covering the production of starter strips from recovered wax. Many of these are aimed at the top bar hive community, but the process is essentially the same. I’m not going to provide a detailed account here (for reasons I’ll come to in a minute). The principle is straightforward … melt some wax in a container deep enough to make the length of starter strip you need, dip a wooden lath in several times, coating it liberally with melted wax, use a knife to separate the wax from the wooden strip … and repeat … and repeat … and repeat … ad infinitum.

Wax starter strips

Wax starter strips …

Don’t try this at home

What many of these sites don’t tell you is the following:

  • the wooden lath – a simple thin wooden strip of a suitable size onto which the wax is deposited – must be soaked in water before first dipping into the wax. It’s also helpful to dip it briefly in water between starter strips as well.
  • the wax must not be too hot. If it is, all you’ll do on the repeated dipping of the wooden lath is melt off the last layer of wax. I found that the wax needs to be at about 75°C.
  • it’s a pretty messy business. Cover everything with newspaper before you start. You generate a lot of wax scraps – from the edges of the wooden lath for example. These need to be fed back into your wax melter but a good proportion remains stuck to the knife and your fingers.
  • it’s beyond tedious. If you’re making significant numbers the repetition can get pretty boring. I made a hundred or so and was pleased to stop. Make sure you have a good radio programme to listen to …
  • the wax strips you make are quite brittle. The typical flexibility you get with sheets of foundation requires rolling the thin wax strips under pressure. Be warned, some of them may crack during subsequent handling.

Frankly, I’m not convinced it was worth doing and it’s unlikely I’ll be doing it again. I’m much more likely to trade in pre-cleaned blocks of wax for premium quality unwired thin foundation which can easily be cut into starter strips. You have been warned.

Cooling starter strips

Cooling starter strips …

Fixing wax starter strips in place

Whether you make your own or slice and dice a few sheets of embossed foundation you still need to fix these starter strips into the frame top bar. I’ve previously used standard gimp pins, holding the strip of foundation down with the wedge nailed back in position. However, experience shows that these long strips often flex and fall out over time if not quickly used by the bees. This is most obvious in bait hives where – if not occupied by a swarm – you’ll often find the foundation strip has worked loose and is now hanging down.

Homemade starter strips may be too brittle to nail in place and are likely to be thinner than embossed foundation strips, so fit less well anyway. Instead, the easiest way to fix any of these wax strips is to place them into the slot in the frame and ‘paint’ a little molten wax down either side of them. This makes a secure joint with the wood.

Wax starter strips ...

Wax starter strips …

Lots of lolly

Tongue depressor strips

Tongue depressor strips

Of course, it’s widely reported that bees don’t need a wax starter strip at all and/or that bees can engineer a much more secure connection between wax and the top bar. So, why bother doing this bit for them? Michael Bush has some excellent information on foundationless frames and is a strong supporter of an unwaxed bevelled top bar or a simple wood strip. The former is more than I could be bothered to produce, but a simple wooden strip is straightforward. Michael Bush suggests that the starter strip needs to protrude about a ¼ of an inch. Tongue depressors (don’t ask) are ideal for this and you can buy them in bulk from eBay if needed. I used a pair of tinsnips to cut them to length and fixed them in place with a few dabs of woodworking adhesive.

Wooden starter strips

Wooden starter strips …

Due to the ‘vertical’ bamboo skewers in these frames this is more fiddly than simply fixing a strip of foundation in place. However, if they are as robust as I expect, this is a job that will only need doing once. After use, if the comb is manky and black, it should be a simple matter to melt it out in the steam extractor and reuse the frames.

Experimental evidence

One of the pleasures of off-season dabbling is that you can invest a little time in planning for the year ahead and trying a range of new things to see what works best.

I’m already convinced of the benefits of foundationless frames. For reasons explained previously I’ve prepared some foundationless frames with vertical bamboo skewers this year, rather than horizontally ‘wired’ monofilament. As explained here, I’ve also prepared frames with different types of starter strips.

All of this takes extra work. However, I can justify it in terms of further money-saving, better performance or simply because of the rewarding feeling you get doing something yourself (in order of increasing importance to me).

Nevertheless, if I’m doing extra work, I want to gain the maximum benefit from the time invested. For example, I want to know which type of starter strip works best for me and my bees. I’ve therefore prepared a dozen mixed starter strip frames. One third bare wood, one third wax-coated wood and one third wax starter strips. During the season I’ll pop a few of these into expanding colonies and see which they prefer.

Take your pick ...

Take your pick …

Bevelled … at a cost

Bevelled top bar

Bevelled top bar

Michael Bush likes simple bevelled top bars. Foundationless frames with a bevelled (‘V’-shaped) top bar are sold by Thorne’s. These have no additional monofilament, wire or bamboo supports. I’m not sure how long these have been available and haven’t heard any reports of beekeepers using them. They’re not inexpensive … £19.44 flat or £34 assembled for 10. Newly drawn, unsupported brood comb, particularly when it’s not fully attached to the side bars, is both a thing of beauty and rather delicate. Particularly on a hot day. These frames would certainly need careful handling. I’d be concerned that these might appeal to a relatively recent beekeeper who is attracted by the thought of a top bar hive. An experienced beekeeper would appreciate the fragility of unsupported new comb (and would likely make their own frames anyway). In contrast, a beginner might find themselves with a bootfull of irritated bees.


 But also see the recent comments from Calum on the prices of ready made frames … something around €1 if bought in sufficient numbers.

 Thin, unwired, premium-quality foundation from Thorne’s is just over £8 for 10 sheets at the time of writing. That’s enough for about 100 frames using a ~20mm starter strip.

 

 

Bamboo

I have been using increasing numbers of foundationless frames for the last couple of years. Rather than using a full sheet of embossed, wired foundation I let the bees draw the comb they need. I simply provide them with a frame containing some built-in support to provide lateral stability, together with a small strip (~1cm) of foundation to give them a clue where to start. They work very well. The newly drawn comb is beautiful and the bees draw drone and worker cells as needed. It can also save quite a bit of money.

Mono, wire … wood?

Harvesting brood

Harvesting brood

It is possible to use foundationless frames without any additional comb support. However, before it’s completely drawn and securely attached to the side bars it can be a little delicate. I therefore always provide some cross-bracing that can be incorporated into the newly drawn comb to give lateral support.

For the supports I’ve previously been using monofilament fishing line with a breaking strain of 30-50lb threaded through three pairs of holes drilled through the side bars. Although monofilament is inexpensive and easy to obtain, it’s a bit awkward and slow to ‘wire’ the frames and it doesn’t resist the heat of the steam wax extractor. Bees can also sometime nibble through the 30lb stuff whereas the 50lb – although thick enough to withstand the bee nibbling – is less easy to work with. Furthermore, for my day job we regularly harvest 2-3″ square sections of larvae- or pupae-containing brood comb (see the image above). We do this with a sharp serrated knife. This often severs the monofilament and can leave the frame poorly supported. For these reasons I wanted to prepare foundationless frames with more robust supports for the season(s) ahead.

One option would be to use stainless steel wire. This would certainly be heat resistant. It’s widely available and relatively inexpensive. However, to get sufficient tension it might necessitate fixing eyelets to the side bars to stop the wire cutting into them. Whilst I was considering this there was a post on the SBAi forum suggesting the use of bamboo BBQ skewers. This may well have been suggested elsewhere – there are few original ideas in beekeeping – but it was a new idea to me.

Skewered

BBQ skewers are available from an eBay in just about any length and amount you could want. One thousand 25cm skewers (the size needed for a standard National brood frame) cost less than a tenner delivered. You can buy 50 or 100 at a time to see if this method works for you (at a higher price per skewer, inevitably).

Predrilled top bars

Predrilled top bars

When preparing the frames I remove the ‘wedge’ and drill two equally-spaced holes through the middle of the top bar. Use a drill bit thinner than the bamboo skewer; I used one of 2.5mm. Assemble the entire frame including both bottom bars. If you’ve not experienced the epiphany of using a nail gun before I recommend borrowing one and discovering how easy it makes putting frames together. Put a small dab of woodworking adhesive (on the inside with regard to the frame) in each of the two holes in the top bar, slip the pointed end of the skewer through the gap in the bottom bars and push it firmly into the glued hole.

Straight and square

If there’s any curve to the bamboo skewer make sure its along the plane of the frame, not bowing out to one side or the other, by rotating the skewer in the hole. Or use a different skewer … they cost less than a penny each. Make sure the skewers are approximately square to the top bar and add another dab of glue either side of where they protrudes through the bottom bars.

Allow the glue to set and then cut off the unwanted pieces of bamboo. I used a Stanley knife for the top bar to get it nice and flush (so I could easily scrape it with a frame tool) and a pair of side cutting pliers for the bottom of the frame.

BBQ skewers

BBQ skewers …

The resulting frame is then ready for the foundation. I’ll cover this in a separate post as I’ve been making my own starter strips.

Bamboo foundationless frames

Bamboo foundationless frames


As an aside, the frame in the photograph titled ‘Harvesting brood’ is foundationless. It’s a perfect example of why lateral support is required to make these frames robust enough to handle easily. The bees have drawn the frame out completely but have only secured it to the side bars in a few spots. The comb isn’t attached to the bottom bars at all.

 A quick interwebs search turned up a post by Matt Davey on Beesource that lead me to his brief description of using bamboo skewers for foundationless frames. In addition, Kitta – the original poster on the SBAi forum – also kindly directed me to the Heretics Guide to Beekeeping, which is also worth a look. As I said before, if something is a good idea in beekeeping (or a bad idea), someone will have had it before 😉

 

Same time, next year

About this time last year a swarm arrived in a bait hive in my back garden in Fife. Almost exactly one year later a different bait hive in the same spot was occupied by another swarm … or, possibly, a very good-sized cast.

The bait hive was being investigated by scout bees for a few days but on 6th, which was a very warm day here in Fife, the numbers increased markedly from a couple of dozen to a hundred or more. On my return from work on the following day the swarm was in residence. My neighbour reported seeing a ‘huge swarm arriving’ at about 11am.

Foundationless frames and bait hives

The hive contained a single old, dark brood frame and about five foundationless frames, together with a cotton bud dipped in lemongrass oil. I’ve previously described why I think foundationless frames are so convenient for bait hives – they provide the bees with guides to build new comb without taking up significant space in the box. It’s worth remembering that the scout bees are seeking out a sheltered, south facing, bee-smelling (ideally), empty space of about 40 litres volume i.e. about the same as a single National brood box. Foundationless frames take up little space, but mean that an arriving swarm can start building new comb immediately … and they do.

I posted a photo last week of a swarm from the bee shed that had clustered because the queen was clipped and so unable to fly. I dealt with the swarm within a couple of hours of it settling. Once cleared, the wall of the bee shed was dotted with small crescents of wax as the bees had already started to build new comb. In the bait hive, when checked on the evening of the 8th (less than 48 hours after the bees arrived) they were well on their way to drawing out the first three foundationless frames, with the first of these being half full of nectar, presumably from the dregs available in the nearby OSR fields.

Mite treatment be needed?

Almost certainly … and there’s no better time. When swarms leave a hive they take with them up to 35% of the Varroa population as phoretic mites. A large swarm from a heavily infested hive can therefore introduce an unhealthy dose of virus-riddled mites to your apiary. These will rapidly spread to your other hives. I therefore routinely treat swarms with suitable miticides soon after they arrive, well before any brood is sealed. I don’t look for DWV symptoms or bother searching for signs of phoretic mites, I just treat. Due to work commitments this swarm had to be treated on the third day after arrival, before I was even certain whether the queen was laying or not. Within the first 24 hours after treatment (with sublimated oxalic acid) there were about 40-50 mites on the board, with more falling over the next couple of days. It’s far easier and more effective to treat when there’s no brood present and so give the colony the very best chance of getting well established without a pathogenic virus load.

Finally, after a day of heavy rain, I took advantage of the bees being all ‘at home’, sealed the entrance and relocated them to another apiary to make space for a replacement bait hive on the same spot … on the off chance that swarming here isn’t over yet.

If it is, then there’s always the same time, next year.


Same time, next year was a 1978 romantic comedy starring Alan Alda and Ellen Burstyn about a couple, married to others, who meet by chance, develop an “instant rapport” or at least “really hit it off” (one of the quotes from the film) and then meet again, year after year, both gradually changing, ageing and dealing with life’s crises.