Tag Archives: OSR

Spring honey harvest

With good Spring weather the first honey extraction of the year is usually timed for early June.

Oil seed rape (OSR) ...

Oil seed rape (OSR) …

We’ve had wonderful weather in the east of Scotland this Spring. Unusually, colony build-up was in time to exploit the Spring nectar and several colonies ended up with at least three supers.

One of my two main apiaries is close to oil seed rape (OSR) fields and this was more or less finished by late May. OSR nectar has a high glucose content and readily crystallises. It’s therefore important to get the honey off before it sets rock solid in the frames 1.

Is the honey ready yet?

However, it’s also important not to remove the supers before the bees have capped off the comb, or at least reduced the water content below ~20% or there is a real risk that the honey will ferment in storage.

Capped honey super frame ...

Capped honey super frame …

When adding new supers I always put them directly above the brood box. Therefore, in a stacked hive, the top super will be the oldest and the most likely to be capped and ready to remove. Lower down the frames may be partially capped. Usually you’ll find the frames in the middle of the box capped before the outliers.

(Very) partially capped honey super frame ...

(Very) partially capped honey super frame …

During weekly inspections in late May I check the supers. If a frame is capped it’s ready. If it’s not and the nectar is dripping out when you turn the frame over then it’s definitely not ready.

You can test if uncapped frames are ready by giving them a sharp shake directly over the open super. If nectar drops are shaken out the water content is still too high. Sometimes you’ll find the majority of the frame capped with watery nectar at the very edges.

You don’t need to check every frame, or even every super. With widely spaced frames you can often clearly see they’re all capped. If you can’t you probably just need to check a central frame and one or two on the periphery.

Clearer boards

Fully capped supers usually contain relatively few bees when compared to partially or uncapped frames. Therefore, if the super is fully capped it’s usually easy enough to shake the bees off each frames, transferring the frames to a spare super for transport.

However, supers like the one pictured above, are often covered in bees. The easiest way to clear these is to use a clearer board. These provide a ‘no-moving-parts-one-way-valve’ means of emptying the super of bees. The design I use has a thick lower rim, providing ample space for the bees that move down in the hive. If I’m clearing a tall stack of supers I’ll often add an empty super below the clearer rather than completely overcrowding the brood box.

Removed and inverted clearer board ...

Removed and inverted clearer board …

Add the clearer board 2 and return the following day to remove the super(s) that are now nearly empty of bees. There are almost always a few stragglers 3.

Interestingly, I’ve noticed this year that there are more stragglers if the colony is queenless. I suspect that this might influence the movement of bees in the hive. This isn’t a scientifically controlled observation … just an “I’ve noticed” 😉

Keeping the supers warm

A defining feature of a good year in beekeeping is that you run out of equipment … frames, supers, split boards, roofs etc. With the exception of roofs (because I knock them up from Correx sheets for a couple of quid each) I’ve run out of all of these this year.

And clearers 🙁

Stacked warming supers ...

Stacked warming supers …

I therefore clear a few hives at a time. However, I like to do all my honey extracting in a single day (or weekend if it’s been a good year). This is mainly because I loathe the cleaning up afterwards 🙂

I therefore keep the supers warm until I’m ready to extract. My honey warming cabinet was designed to take 2 x 15kg buckets of honey (inside) or to allow two stacks of supers to be built on top of the open box.

By ensuring no gaps and adding some insulation (bubble wrap or an old blanket) on top I can set the element at ~40°C and the honey in the stacked supers is kept nice and warm 4.

This offers two very significant advantages. OSR honey takes longer to crystallise and the honey, being warm, is much easier to extract.

If the stack of supers is 6+ high I usually rotate them top to bottom, bottom to top every few days, and try and extract from the warmest supers first. This year I cleared supers over a 7-9 day period and extracted them all together.

Mind your back

A brief word of caution … full supers are heavy. Take care lifting them.

Out of interest I weighed some full cedar and poly supers and they each weighed 17-21kg (about 37-43lb). The weight difference isn’t just the weight of the box as the supers contained different numbers of frames, so I’m not comparing like with like.

Full super ready for extraction

Full super ready for extraction …

Beekeeping is hard work. If you extract just 10 supers, handling the boxes just five times each during the process (hive to car, car to house, house to warming cabinet to extractor and then back again) you’ll have moved about a metric tonne. You will move them more than this.

Beekeepers back is a very real problem.

And that’s before you handle individual frames during uncapping and loading the extractor. After a hundred full frames I get very sore hands doing this bit, let alone shifting all the full boxes.

Extraction

Honey extraction ...

Honey extraction …

Extracting honey is a bit of a chore.

It’s not even much fun writing about it … 😉

The first bucket or two is enjoyable 5, but the novelty wears off really fast. It’s noisy, repetitive, hot, hard work. Did I say it was repetitive?

I’ve reviewed my extractor previously. It works well and I try and look after it carefully. There’s lots of preparation and even more cleaning up afterwards.

I always run the extractor with the gate open, filtering honey directly through coarse and fine filters into 15kg buckets 6. Once a bucket is full I measure the water content with a refractometer and label the lid with the year/month, source apiary 7, the honey weight and the %age water.

Buckets get stored in a cool, stone-floored room. The honey sets and will keep more or less indefinitely until it’s needed for bottling. Where possible I use the buckets with the highest water content first.

Beer

And once I’ve completed all the cleaning up I treat myself to a well-deserved beer … 🙂


Colophon

Spring follows winter and precedes summer. However, the timing is variable and depends upon the hemisphere and whether you use meteorological or astronomical reckoning. In the US and UK it’s March, April and May using meteorological reckoning. However, there’s not much nectar collected here in the East of Scotland in March. Alternatively, using astronomical/solar reckoning Spring starts on the vernal equinox (~20th March) and ends on the summer solstice (which, conveniently, was yesterday … 😉 ).

Beekeepers might be better using a phenological or ecological estimation for the start of Spring, for example defined by the flowering of a particular range of plants.

Alternatively – and a whole lot easier to measure but much more difficult to predict – define Spring like Swedish meteorologists … “the first occasion on which the average daytime temperature exceeds zero degrees Celsius for seven consecutive days”. This means Spring will vary  with both latitude and elevation. Perfectly sensible and at the same time confusing 🙂

A late start …

After a couple of false alarms, the season finally feels like it’s about to start, with temperatures predicted to be consistently into the (low) teens by this time next week. It’s been a punishing Spring as far as my beekeeping has been concerned with lots of queen failures due to poor mating success last year. I therefore need to expand my current stocks in time for the summer nectar flow – ever hopeful! – but am pretty-much resigned to not being able to exploit the oil seed rape (OSR) that is just about starting to flower in the fields nearest my out apiary (it’s already flowering well in other parts of the county – out of foraging range for my bees though).

OSR 30th April 2015 ...

OSR 30th April 2015 …

Go forth and multiply

It’s not all doom and gloom though … colonies that are queenright are expanding well despite the weather. Those in the bee shed are doing particularly well, with part-filled supers (dandelion perhaps?) and colonies expanding up to a double brood box. As an aside, I’d estimate that these colonies are at least 2-3 weeks further advanced than those ‘outside’ … I’ll discuss this in more detail in a later post. Furthermore, the colonies that haven’t developed DLQ’s include some beautifully docile bees, very steady on the comb even when inspecting them in less than ideal conditions, of which we’ve had lots this Spring. With the expectation (or at least hope) of much better weather by the end of the month I’ll be setting up some vertical splits. This is an easy way of either requeening or making increase, involving a minimum of equipment and almost no interventions in terms of hive manipulations. This is queen rearing made easy … simply dividing a suitable colony and giving each half an opposing entrance, then turning the colony through 180° after 7 days. I’ve also sourced a couple of Snelgrove boards to try this year, but work commitments mean these will have to wait until later in the season as they need a little more attention than a simple split board.

Split board

Split board …

Covet thy neighbours bees … or at least catch his swarms

With the assumption that other strong colonies are at least as well advanced as mine I’ve also set out a number of bait hives. Each of these contains an old dark brood frame – importantly containing no stores or you just attract robbers – pushed against the back wall and several (6-9) foundationless frames. The top bar of the old brood frame gets a few drops of lemongrass oil (this stuff ‘eats’ poly hives, which is what my bait hives are made from, so make sure you keep it restricted to the wooden frame). Bait hives should also have solid floors and small entrances – so I cover the OMF with a few scraps of Correx. Finally, to save on equipment I also often use a simple square of heavy duty polythene sheeting as a crownboard.

I set bait hives out every year, catching a few swarms that would otherwise disappear into the church tower, someones loft space or perish in a thunderstorm. It’s always a bit hit and miss in terms of the quality of bees that are attracted … of course, other than when I catch a swarm from my own colony 😉 The peak swarming season extends over the next 6-8 weeks and the bees are always useful, if only to act as willing recipients for queens raised next month when I’ll start grafting.

Bait hives ...

Bait hives …

New queens

Finally, I’ve ordered a couple of queens from a reputable (UK-based) queen breeder to improve the genetics of my stocks. One of my apiaries is in a region with predominantly black ‘native’-type bees in the area, and with local beekeepers keen to keep it that way. I’ll requeen colonies in this apiary with these queens – and in due course their daughters – to be both a good neighbour and to see whether these ‘native’ bees perform better than my Heinz (57 varieties) local mongrels.

2015 in retrospect

The winter solstice seems like a good time to look back over the 2015 beekeeping year. With the day length about to start increasing, what went right and what went wrong? Back in March I wrote that my plans for the year were different from the usual OSR – swarming – queen rearing – summer flow – harvest – Varroa treatment – feed-’em-up and forget ’em routine as I was moving to Scotland in the middle of the season. Some of these things happened, though perhaps less than in a usual year.

Mid-season memories

Mid-season memories …

Spring – better late than never

Cloak board ...

Cloake board …

The OSR yielded poorly as the spring was cold and late. I didn’t even look inside a colony until mid-April. Colonies were only getting strong as the OSR flowers went over meaning that most of it was missed. The weather was unseasonably cold, with mid-May being 2-3ºC cooler than average. Queen rearing started in the third week of May and although grafting went well, queen mating was really hit and miss, with low temperatures and lots of rain lasting through May and June. On a more positive note, I used a Cloake board for the first time and was pleased with the results (I’ll write about this sometime in 2016 after using it a bit more). I didn’t use any mini-nucs this year as I didn’t want the hassle of dealing with them mid-season when moving North. Instead, I did all of my queen mating in 2-5 frame nucs, often produced as circle splits from the cell-raising colonies. This worked well … and considering the lousy weather was probably a lot less effort than using mini-nucs which would have required constant attention and lots of feeding. Using poly-nucs I could prime them with a frame of brood and a frame of stores and adhering bees, dummy them down and leave 3 frames of foundation (or wherever possible, drawn comb) ready to be used on the other side of the dummy board. Once the queen was mated the colony would build up well and if – as often happened this season – the queen failed to get mated or was lost (drowned?) during mating flights it was easy to unite the queenless unit with a queenright one, so not wasting any resources.

Go forth and multiply

Split board

Split board …

Beginners often find the coordination of colonies for queen rearing, and the apparent difficulty of grafting (it isn’t), a daunting prospect. When I’ve been involved in teaching queen rearing it’s clear that the relatively small scale approach I use (queenright cell raiser, grafting and – usually – mini-nucs) is often still too involved for the very small numbers of queens most beekeepers with just a couple of hives want. It was therefore interesting to raise a few queens using vertical splits, simply by dividing a strong colony vertically and letting the bees do all the work of selecting the best larvae, raising the queen and getting her mated. It has the advantage of needing almost no additional equipment and only requires a single manipulation of the hive (and even that can probably be simplified). Having documented the process this season I’ve got a few additional things I’d like to try in 2016 to make it even easier and to allow better stock selection. After that it will be incorporated into queen rearing talks and training.

Changes in Varroa treatment

The big change in Varroa treatment in the UK was the licensing of Api-Bioxal. Whether or not you consider the 50-fold or more cost of VMD-approved oxalic acid (OA) over the generic powder is justified is really a separate issue. Oxalic acid is an effective miticide and, if administered appropriately, is very well tolerated by the colony. Despite the eyewatering markup, Api-Bioxal is significantly less expensive than all other approved miticides. For the small scale beekeeper it’s probably only 20% the cost of the – often ineffective – Apistan, or either Apiguard or MAQS. Under certain circumstances – resistant mites, low temperatures or the potential for queen loss – there are compelling reasons why OA is preferable to these treatments. If we hadn’t been using OA for years the online forums would be full of beekeepers praising the aggressive pricing strategy of Chemicals Liaf s.p.a in undercutting the competition. Of course, if we hadn’t been using generic OA for years Api-Bioxal would probably be priced similarly to Apiguard 🙁

Sublimox in use

Sublimox in use …

I’ve used OA sublimation throughout 2015 and been extremely impressed with how effective it has been. Mite drops in colonies treated early in the season remained low, but increased significantly in adjacent colonies that were not treated. I treated all swarms caught or attracted to bait hives. Some were casts and there were no problems with the queen getting out and mated (though the numbers of these were small, so statistically irrelevant). Late season treatment of colonies with brood also seems to have worked well. Mite drops were low to non-existent in most colonies being monitored through late autumn. Colonies get mildly agitated during treatment with a few bees flying about under the perspex crownboard (you can see a couple in the image above … this was a busy colony) and a few more rapidly exiting the hive after the entrance block is removed. But that’s it. The colony settles within a very short time. I’ve seen no loss of brood, no obvious interruption of laying by the queen and no long-term detrimental effects. Sublimation or vaporisation of OA can – with the correct equipment – be achieved without opening the hive. I expect to use this approach almost exclusively in the future.

Moving bees

Moving colonies from the Midlands to Fife was very straightforward. Insect netting was an inexpensive alternative to building large numbers of travel screens. It’s the same stuff as Thorne’s sell for harvesting propolis so I’ve got enough now to go into large scale propolis production 😉 The colonies all settled in their temporary apiaries well and I even managed a few supers of honey during the latter part of the season.

Small hive beetle reappeared in Southern Italy shortly after the honey harvest was completed there. Che sorpresa. This was disappointing but not unexpected (and actually predicted by some epidemiologists). As I write these notes the beetle had been found in 29 Calabrian apiaries between mid-september and early December. It’s notable that there’s now a defeatist attitude by some contributors to the online forums (when not if the beetle arrives here) and – since not everyone are what they seem on the interweb – there are some playing down the likely impact of the beetles’ arrival (and hence the demand to ban imports) because they have a vested interest in selling early season queens or nucs, either shipped in or headed by imported queens. I don’t think there’s any sensible disagreement that we would be better off – from a beekeeping perspective – without the beetle, it’s just that banning imports of bees to the UK (admittedly only a partial solution) is likely to cause problems for many beekeepers, not just those with direct commercial interests. I remain convinced that, with suitable training and a little effort, UK beekeeping could be far less dependent on imports … and so less at risk from the pathogens, like small hive beetle. Or of course a host of un-tested for viruses, that are imported with them.

And on a brighter note …

Bee shed ...

Bee shed …

The new development in the latter part of the year was the setting up of a bee shed to house a few colonies for research. This is now more or less completed and the bees installed. It will be interesting to see how the colonies come through the winter and build up in spring. The apiary has colonies headed by sister queens both in and outside the bee shed so I’ll be able to make some very unscientific comparisons of performance. The only problem I’ve so far encountered with the shed was during the winter mite treatment by oxalic acid vaporisation. In the open apiary the small amount of vapour that escapes the sealed hive drifts away on the breeze. In the shed it builds up into a dense acidic hazy smoke that forced me to make a rapid exit. I was wearing all-encompassing goggles and a safety mask so suffered no ill effects but I’ll need an alternative strategy for the future.

Due to work commitments, house, office and lab moves, things were a lot quieter on the DIY front this year. The Correx roofs have been excellent – the oldest were built over a year ago and are looking as good (or as bad, depending on your viewpoint) as they did then. They’ve doubled up as trays to carry dripping supers back from the apiary and I’ll be making more to cover stacks of stored equipment in the future. Correx offcuts were pressed into service as floors on bait hives, all of which were successful.

With well-fed colonies, low mite counts, secure apiaries and lots of plans for 2016 it’s time to make another batch of honey fudge, to nervously (it’s got hints of an industrial cleaning solution) try a glass of mead and to finish labelling jarred honey for friends and family.

Happy Christmas

Lomond Hills and OSR

Lomond Hills and OSR

Making soft set honey

Soft set honey was often called creamed honey before that description was effectively outlawed – at least for labelling purposes – under the trade descriptions act because it ‘contains no cream‘. It’s the stuff that’s spoonable and spreadable, it feels like velvet on the tongue because the crystals are so fine (hence creamy) and it remains looking good for a long time. The long shelf life more than compensates for the (relatively small) effort required to produce it … you don’t have to sell it or give it away quickly before granulation takes over and the appearance is spoiled. Winter is a good time to prepare soft set honey as it requires low temperatures.

Granulation

Granulated honey label

Granulated honey label

All honey granulates. At least, all honey that hasn’t been subjected to the sorts of heating and filtration used by commercial packers to produce a uniform and sometime bland product with a very long shelf life. The rate at which honey granulates is related to its composition. Honey with a relatively high glucose to fructose ratio – such as oil seed rape – granulates faster. Granulation is also influenced by temperature and particulates (e.g. pollen) that acts as a ‘seed’ for granulation. My honey carries a label indicating that granulation is a completely natural process and is a sign of high quality honey.

Soft set honey

Soft set honey is honey in which the granulation has been controlled. A small amount (~10%) of honey with a soft, fine grain, is used as a ‘seed’ for liquid honey. As the latter granulates it takes on the consistency of the seed honey. The principle is straightforward and an industrial process was patented by Elton Dyce in the 1930’s. However, this requires rapid heating and cooling of bulk honey, something most beekeepers are unable to achieve. There are some good descriptions online about making soft set honey, including a useful video by ‘BeekeeperDevon’ on YouTube. There are also a lot of conflicting methods published and some that are, frankly, either nonsense or wrong.

This is how I do it … followed by some details on a few of the critical bits.

  1. Extracted honey should be left to completely crystallise in honey buckets. This might take several weeks. The honey, particularly if it’s OSR, is likely to be spoonbendingly hard. In the following description I’m assuming the honey has only been (at least) coarse filtered on extraction, so will almost inevitably still contain bits of wax and the odd leg or antenna.
  2. Melt a full bucket of crystallised honey completely. For a 30lb bucket I find this takes about 24-36 hours at 50ºC in my honey warming cabinet. Stir it once or twice during this period if you get the chance – this speeds up the process. Honey should not be kept at elevated temperatures for extended periods to avoid the build up of HMF.
  3. Filter the honey into a clean food-grade bucket. I use the double stainless strainer and nylon straining cloth from Thorne’s.
  4. Cool the filtered honey to 35ºC in the honey warming cabinet. At the same time, warm the seed stock (see comments below) to 35ºC in bucket with a tap. By keeping the temperature below about 40ºC the all-important fine crystal structure of the seed stock will not be destroyed.
  5. Add the filtered bulk honey to the seed stock. Mix gently but very thoroughly. The intention is to completely disperse the fine seed stock crystals throughout the mixed honey. You can use a stainless steel corkscrew and drill, or a honey creamer. Of the two I prefer the latter. Try and avoid incorporating air during the mixing (hence ‘gently’) to avoid frosting in the final product.
  6. Cool the honey to less than 14ºC, mixing every 12 hours or so. It’s easy to achieve this temperature in winter in an unheated outhouse, pantry or conservatory. In the summer you can do this by adding a succession of freezer blocks to the warming cabinet (but it’s hard work). The honey will get increasingly hard to mix and will – within a week or less (and possibly within a couple of days) – set. This is soft set honey.
  7. Re-warm the bucket of honey to 35ºC and bottle it. See comments below.

The seed stock

You need about 10% by weight of a suitable seed stock to make soft set honey. You can use more or less, it’s not critical. Much less than 5% and it won’t be enough to ensure even crystallisation, or will take a very long time to finally crystallise. More than 10% is unnecessary and you’d be better saving it for another batch of soft set honey. If you’ve not got a seed stock of a suitable consistency (by which I mean of the consistency you want your final soft set honey to have) you can make, borrow or buy some.

Pestle and mortar

Pestle and mortar …

To make your seed stock grind hard set crystallised honey using a pestle and mortar until it has a wonderful, even consistency. It will start as hard unyielding lumps and end up with the consistency of thick toothpaste. This is hard work but you might only need to do it once, so do it well. You can borrow your seed stock from a neighbouring beekeeper who has something suitable, returning the same amount after you’ve prepared your own soft set honey. Finally, you could even buy your seed stock from a supermarket. If you insist on buying the starter, at least steer clear of the “mix of EU and non-EU” honeys (why don’t they just state “sourced from goodness knows where”?)  which could have just about anything in them. You are aiming to produce a top quality product. The type of honey you use as your seed stock is immaterial; it will only comprise a small amount of the final product, the consistency is what matters.

Bottling soft set honey

At 35ºC the prepared soft set honey will barely flow through the honey tap. However, with a little effort, and a long handled spoon to gently stir it, the thixotropic honey can usually be made to flow sufficiently to get it into jars. Again, to avoid frosting try not to mix air into the honey; hold the jar just under the honey tap with the bucket slightly inclined.

Miscellaneous notes

Spatula spoon

Spatula spoon

Keep about 3lb of your first batch of soft set honey – I use these useful sealable plastic containers – to use as the seed for your next bucket. This might be the following week or the following year – I’ve just used up the last of my 2014-prepared seed stock. If you’re preparing batch after batch of soft set honey on a weekly basis you can simply leave the seed stock in the bottom of the bucket with a tap. I’ve found silicone spatula spoons really useful for mixing honey, for getting the last few ounces out of the honey bucket and for quickly removing all the honey from the last three 1lb jars after you realise you’ve just bottled the seed stock for the next batch 😉

 

Future promise

Winter-sown OSR

Winter-sown OSR …

With the days getting shorter, the weather worsening and the bees hunkering down until the spring there’s little to do in the apiary. The warm weather, weekly inspections, swarm collection and queen rearing are months away … and it feels like it 🙁  However, things are already happening in the fields that hint at the season to come. The winter-sown oil seed rape (OSR) has been through for at least a month and is now 4-6″ tall. There’s a field just outside the village with acres of the stuff and it will be good to watch it develop into a sea of yellow next spring.

I have a few colonies well within range of this field, as do at least a couple of other beekeepers. Using a Google Maps Area Tool I measured the field at about 17 hectares. Although primarily self-pollinated there’s evidence that the yield and quality (i.e. the percentage that germinates) of OSR seed or its oil content, are all increased if honeybees are present at a density of about 2 colonies per hectare. So, ample to go round for the colonies I’m aware of in the immediate vicinity. Furthermore, if colonies are located close to the OSR field boundaries, honeybees forage for a considerable distance across the field – certainly hundreds of metres. This is in contrast to wild pollinators – like solitary bees and bumble bees – which tend to decline in density away from the field margins (see also this recent paper which reports the same thing; PDF). Whilst this is a compelling argument for wide, species-rich field margins and smaller fields, the reality of modern farming is unfortunately very different. However, the benefits of honeybees (and for honeybees) mean that it might be worth having a chat with the farmer and moving a few colonies onto the field.

OSR honey isn’t to everyones taste and it certainly involves more work for the beekeeper. It must be extracted soon after the supers are collected or it crystallises in the comb. In addition, unless it’s converted into soft-set or ‘creamed’ honey it will inevitably set rock-hard in the jar, resulting in many bent teaspoons. On a more positive note, the availability of large amounts of pollen and nectar relatively early in the season helps colonies build up strongly. With good weather it’s an ideal time to replace comb, getting the bees to use the OSR nectar to build brand new comb – perhaps on foundationless frames – free of diseases for the season ahead. A great way to start the year.

And finally, a reminder of what’s to come …

Early May 2015 OSR ...

Early May 2015 OSR …