Tag Archives: phoretic

Pedantically not phoresy

The life cycle of the ectoparasitic mite Varroa destructor essentially consists of two stages. The first is within the capped cell, where reproduction takes place. The second occurs outside the capped cell when the recently-mated female progeny mites matures while riding around the colony attached to a nurse bee.

Almost without exception this second stage is termed the phoretic phase.

It isn’t.

Phoresy

Phoretic is an adjective of the word phoresy. Phoresy is derived from the French phorésie which, in turn, has its etymological origins in the Ancient Greek word φορησις.

And φορησις means being carried.

Which partly explains why the correct definition of the word phoresy is:

An association between two organisms in which one is carried on the body of the other, without being a parasite [OED]

Phoresy has been in use for about a century, with the word phoretic first being recorded in the Annals of the Entomological Society of America (25:79) in 1932:

It is possible, as suggested by Banks (1915), that such young mites are phoretic, being carried about from place to place on the host’s surfaces.

And, no, they weren’t discussing Varroa.

“Without being a parasite”

These are the critical words in the dictionary definition of phoresy which makes the use of the word phoretic incorrect when referring to mites on nurse bees.

Because mites on nurse bees are feeding – or at least a significant proportion 1 of them are.

They are therefore being parasitic and so shouldn’t be described as phoretic.

Om, nom, nom 2

Last week I discussed the recent Samual Ramsey paper presenting studies supporting the feasting of Varroa on the fat body of bees.

In the study they harvested bees from a heavily mite-infested hive and recorded the location on the bee to which the mite was attached.

The majority were attached to the left underside of the abdomen. More specifically, the mite was wedged underneath the third abdominal tergite 3.

What were they doing there? Hiding?

Yes … but let’s have a closer look.

Ramsey and colleagues removed some of the mites and used a scanning electron microscope to examine the attachment point on the bee. Underneath the tergite there is a soft membrane. The imprint of the body of the mite was clearly visible on the membrane.

Varroa feeding location on adult bee

Scanning EM of Varroa feeding location on adult bee

The footpads of the mite were left attached to the membrane (left image, white arrows), straddling an obvious wound where the mouthparts had pierced the membrane (black arrow). Between them, the inverted W shape is presumably the imprint of the lower carapace of the mite.

The close-up image on the right even shows grooves at the wound site consistent with the mouthparts of the mite.

These mites were feeding.

Extraoral digestion

Varroa belongs to the order (a level of classification) Mesostigmata. Most mesostigmatids feed using a process termed extraoral digestion.

Extraoral digestion has also been termed ‘solid-to-liquid’ feeding. It involves the injection of potent hydrolytic enzymes which digest solid tissue, converting it to a semi-solid that can be easily ingested. It can reduce the time needed to feed and it increases the nutrient density of the consumed food.

If Varroa fed on haemolymph it wouldn’t need to use extraoral digestion. Instead it would need all sorts of adaptations to a high volume, low nutrient diet. Varroa doesn’t have these. It has a simple tube-like gut parts of which lack enzymatic activity … implying that digestion occurs elsewhere.

A picture is worth a thousand words

Do the images of feeding mites support the use of extraoral digestion?

EM cross-section of Varroa feeding

EM cross-section of Varroa feeding

The image above 4 shows the cross-section of a Varroa (V), wedged under the tergite (Te), feeding through a hole (arrow in the enlargement on the right) in the membrane (M). The fat body (FB) is immediately underneath the membrane. The scale bar is incorrectly labelled 5.

A close-up of the wound site shows further evidence for extraoral digestion.

Feeding wound at higher magnification

Feeding wound at higher magnification

Beneath the wound site (C, arrow) are remnants of fat body cells (white arrow) and bacteria (black arrow; of two types, shown in D). A closer look still at the remnants of the fat body (E and F) shows cell nuclear debris (blue arrows) and lipid droplets (red arrows).

These images are entirely consistent with extraoral digestion of fat body tissue by feeding Varroa. The presence of bacteria near the wound suggests that bacterial infection may result from Varroa feeding, possibly further contributing to disease in bees.

So, pedantically it’s not phoresy

So-called phoretic mites, unless they’re on the thorax or head of the bee, are not really phoretic. They are being carried about, but they are also likely feeding. By definition that excludes them from being phoretic.

Instead they are ectoparasites of adult bees.

What are the chances that beekeepers will stop using the term phoretic?

Slim to none I’d predict 6.

And, of course, it doesn’t really matter what the correct term for them is.

What’s more important is that beekeepers remember that it’s at this stage that mites are susceptible to all miticides.

The June gap

But it’s also worth thinking about the potential impact of brood breaks.

During brood breaks all the mites in the colony must be ‘phoretic’.

Generally, the majority of the mites in a hive are in capped cells. Depending upon the stage of the season, the egg-laying rate of the queen and other factors, up to 90% of the mites are associated with developing pupae.

But as the laying rate dwindles more and more mites are released from cells and become ‘phoretic’, unable to find a suitable late-stage larva to infest.

And which bees do the mites associate with?

Nurse bees primarily, for reasons I’ll discuss in the future. But – spoiler alert – one of the reasons is likely to be that they have a larger fat body.

So, a mid-season brood break (e.g. the ‘June gap’) is likely to result in lots more nurse bees becoming both the carriers and the dinner of the mite population.

Some or many of the nurse bee cohort may perish, perhaps from damage to the fat body or from the viruses acquired from the mite. However, bees exhibit phenotypic plasticity, meaning that older bees can revert to being nurse bees when the queen starts laying again.

Late season brood breaks

In late summer mite levels are usually at their highest in the hive. A brood break occurring now will release a very large number of mites to parasitise the adult bee population.

Presumably these mites select the bees best able to support them 7.

And which bees are these? The nurse bees of course. But it’s also worth remembering that there are key physiological similarities between nurse bees and winter bees. Both have low levels of juvenile hormone and high levels of vitellogenin (stored in the fat body).

So I’d bet that the ‘phoretic’ mites during a late season brood break would also preferentially associate with any early-produced winter bees.

Furthermore, once the queen starts laying again – perhaps in early/mid-autumn – the winter bees being produced would be subjected to the double-whammy of high levels of mite infestation and potential damage from ‘phoretic’ mites.

Practical considerations

More work is required to model or actually measure the impact of late season brood breaks, high levels of ‘phoretic’ mites, nurse bee numbers and winter bee development.

Compare two colonies of a similar size with a similar mite load, treated at the same time in early autumn with an appropriate miticide. If one of them experienced a late summer brood break (pre-treatment) and consequent high levels of ‘phoretic’ mites, does this reduce the chances of the colony surviving overwinter?

Who knows? Lots and lots of variables …

Fundamentally, it remains important to treat colonies early enough to protect the winter bee population. You’ve heard this from me before and you’ll hear it again.

However, it’s something to think about and I can see ways in which it might influence the strategy and timing of mite control used. I’ll return to this sometime in the future.


 

Know your enemy

What less appropriate time is there, as we enter the festive season of goodwill, to provide a brief account of the incestuous and disease-riddled life cycle of the Varroa mite?

Happy Christmas 🙂

Scanning electron micrograph of Varroa destructor

Scanning electron micrograph of Varroa destructor

Varroa is the biggest enemy of bees, beekeepers and beekeeping. During the replication cycle the mite transfers a smorgasbord of viruses to developing pupae. One of these viruses, deformed wing virus (DWV), although well-tolerated in the absence of Varroa 1replicates to devastatingly high levels and is pathogenic when transferred by the mite.

Without colony management methods to control Varroa, mite and virus replication will eventually kill the colony.

I’ve written extensively on ways to control Varroa. Most of these have focused on early autumn and midwinter treatment regimes. However, next season I’m hoping to discuss some alternative strategies and will need to reference aspects of the life cycle of Varroa … hence this post.

What is Varroa?

Varroa destructor is a distant relative of spiders, both being members of the class Arachnida … the joint-legged invertebrates (arthropods). It was originally (and remains) an external parasite (ectoparasite) of Apis cerana (the Eastern honey bee) and – following cross-species transfer a century or so ago – Apis mellifera, ‘our’ Western honey bee.

Apis cerana, having co-evolved with Varroa, has a number of strategies to minimise the detrimental consequences of being parasitised by the mite.

Apis mellifera doesn’t. Simple as that 2.

One hundred years is the blink of an eye in evolutionary terms and, whilst there are bees that have partial solutions – largely behavioural (small colonies and very swarmy) – they’re probably unable to collect meaningful amounts of honey 3.

Varroa-resistant honey bees will probably evolve (as much as anything is predictable in evolution) but not in my time as a beekeeper … or possibly not until Voyager 2 leaves the Oort Cloud 4.

And there’s no guarantee they’ll be any use whatsoever for beekeeping …

The replication cycle of Varroa

Varroa has no free-living stage during the life-cycle. The adult mated female mite exhibits two distinct phases during the life-cycle. It has a phoretic phase on adult bees and a reproductive phase within sealed (‘capped’) worker and drone brood cells. Male mites only ever exist within sealed brood cells.

I’m going to discuss phoretic mites in a separate post. I’ll concentrate here on the replication cycle.

The mated female mite enters a cell 15-50 hours before brood capping. Drone brood is chosen preferentially (at ~10-fold greater rates than worker brood) and entered earlier. Depending upon the time of the season and the levels of mites and brood, up to 70-90% of mites in the colony occupy capped cells.

The first egg is laid ~70 hours after cell capping. This egg is unfertilized and develops into a haploid male mite. Subsequent eggs are fertilised, diploid, and so develop into female mites. These are laid at ~30 hour intervals.

The replication cycle of Varroa

The replication cycle of Varroa

Worker and drone brood take different times to develop. Therefore a typical reproductive cycle involves five eggs being laid in worker brood and six in drone brood. Not all of these eggs mature, their development being curtailed by the bee emerging as an adult.

There are all sorts of developmental stages involved in getting from an egg to a mature unfertilised mite, but these are not important in terms of the overall outcome. Mite-geeks love this sort of detail 5, but we need to cut to the chase …

Keeping it in the family

The foundress ‘mother’ mite and her progeny all share a single feeding hole through the cuticle of the developing pupa.

What a lovely scene of family ‘togetherness’. 

Male and female mites take 6.6 and 5.8 days respectively to develop to sexual maturity. Therefore the male mite reaches sexual maturity before the first of his sisters.

He then lurks around the attractive-sounding “faecal accumulation site” and mates with each of the (sister) females in turn.

What a little charmer 😉

Male mites are short lived and the eclosion of the adult worker or drone curtails further mating activity, releasing the foundress mite and the mated mature daughters 6.

Reproductive rate (mites per cell)

The three day difference in the duration of worker and drone development means that more mites are produced from drone cells than worker cells. Depending on conditions the reproductive rate is 1.3 – 1.45 in worker brood and 2.2 – 2.6 in drone brood.

Remember that the foundress is also released from the cell. She can go on to initiate one or two further reproductive cycles (or up to 7 in vitro). Consequently, the average yield of mature, mated female mites from worker and drone cells is a fraction over 2 and 3 respectively.

Before entering a fresh cell containing a late stage (5th instar) larva the newly-mated mites need to mature. They do this during the phoretic phase which lasts 5-11 days. Therefore the full replication cycle of the mite probably takes a minimum of about 17 days.

Exponential growth

Two to three mites per infested cell doesn’t sound very much. However, under ideal conditions this leads to exponential growth of the mite population in the colony. Assuming 10 reproductive cycles in 6 months, a single mite would generate a population of >1,000 in worker brood and >59,000 in drone brood 7.

Fortunately (for our bees, not for the mites), ideal conditions don’t actually occur in reality.

Lots of things contribute to the reduction in reproductive potential. For example, only 60% of male mites achieve sexual maturity due to developmental mortality, drone brood is only available at certain times in the season, brood breaks interrupt the availability of any suitable brood and grooming helps rid adult bees of phoretic mites.

Out, damn'd mite ...

Out, damn’d mite …

However, these reductions aren’t enough. Without proper management mite levels still reach dangerously high levels, threatening the long-term viability of the colony.

In the next few months I will discuss some additional opportunities for reducing the mite population.

In the meantime, as we reach the winter solstice, colonies in temperate regions may well be broodless and – as emphasised last week – this is an ideal time to apply a midwinter oxalic acid-containing treatment. This will effectively reduce mite levels for the start of the coming season.

Happy Christmas … unless you’re a mite 😉


Colophon

Today is the winter solstice in the Northern hemisphere. This is actually the precise time when the Earth’s Northern pole has its maximum tilt away from the Sun. However, the term is usually used for the day with the shortest period of daylight and the longest period of night. In Fife, sunrise is at 08.44 and sunset at 15.37, meaning the day length is 6 hours and 53 minutes long.

With increasing day length queens will start laying again … but there’s a long way to go until winter is over.