Tag Archives: Samuel Ramsey

Pedantically not phoresy

The life cycle of the ectoparasitic mite Varroa destructor essentially consists of two stages. The first is within the capped cell, where reproduction takes place. The second occurs outside the capped cell when the recently-mated female progeny mites matures while riding around the colony attached to a nurse bee.

Almost without exception this second stage is termed the phoretic phase.

It isn’t.

Phoresy

Phoretic is an adjective of the word phoresy. Phoresy is derived from the French phorésie which, in turn, has its etymological origins in the Ancient Greek word φορησις.

And φορησις means being carried.

Which partly explains why the correct definition of the word phoresy is:

An association between two organisms in which one is carried on the body of the other, without being a parasite [OED]

Phoresy has been in use for about a century, with the word phoretic first being recorded in the Annals of the Entomological Society of America (25:79) in 1932:

It is possible, as suggested by Banks (1915), that such young mites are phoretic, being carried about from place to place on the host’s surfaces.

And, no, they weren’t discussing Varroa.

“Without being a parasite”

These are the critical words in the dictionary definition of phoresy which makes the use of the word phoretic incorrect when referring to mites on nurse bees.

Because mites on nurse bees are feeding – or at least a significant proportion 1 of them are.

They are therefore being parasitic and so shouldn’t be described as phoretic.

Om, nom, nom 2

Last week I discussed the recent Samual Ramsey paper presenting studies supporting the feasting of Varroa on the fat body of bees.

In the study they harvested bees from a heavily mite-infested hive and recorded the location on the bee to which the mite was attached.

The majority were attached to the left underside of the abdomen. More specifically, the mite was wedged underneath the third abdominal tergite 3.

What were they doing there? Hiding?

Yes … but let’s have a closer look.

Ramsey and colleagues removed some of the mites and used a scanning electron microscope to examine the attachment point on the bee. Underneath the tergite there is a soft membrane. The imprint of the body of the mite was clearly visible on the membrane.

Varroa feeding location on adult bee

Scanning EM of Varroa feeding location on adult bee

The footpads of the mite were left attached to the membrane (left image, white arrows), straddling an obvious wound where the mouthparts had pierced the membrane (black arrow). Between them, the inverted W shape is presumably the imprint of the lower carapace of the mite.

The close-up image on the right even shows grooves at the wound site consistent with the mouthparts of the mite.

These mites were feeding.

Extraoral digestion

Varroa belongs to the order (a level of classification) Mesostigmata. Most mesostigmatids feed using a process termed extraoral digestion.

Extraoral digestion has also been termed ‘solid-to-liquid’ feeding. It involves the injection of potent hydrolytic enzymes which digest solid tissue, converting it to a semi-solid that can be easily ingested. It can reduce the time needed to feed and it increases the nutrient density of the consumed food.

If Varroa fed on haemolymph it wouldn’t need to use extraoral digestion. Instead it would need all sorts of adaptations to a high volume, low nutrient diet. Varroa doesn’t have these. It has a simple tube-like gut parts of which lack enzymatic activity … implying that digestion occurs elsewhere.

A picture is worth a thousand words

Do the images of feeding mites support the use of extraoral digestion?

EM cross-section of Varroa feeding

EM cross-section of Varroa feeding

The image above 4 shows the cross-section of a Varroa (V), wedged under the tergite (Te), feeding through a hole (arrow in the enlargement on the right) in the membrane (M). The fat body (FB) is immediately underneath the membrane. The scale bar is incorrectly labelled 5.

A close-up of the wound site shows further evidence for extraoral digestion.

Feeding wound at higher magnification

Feeding wound at higher magnification

Beneath the wound site (C, arrow) are remnants of fat body cells (white arrow) and bacteria (black arrow; of two types, shown in D). A closer look still at the remnants of the fat body (E and F) shows cell nuclear debris (blue arrows) and lipid droplets (red arrows).

These images are entirely consistent with extraoral digestion of fat body tissue by feeding Varroa. The presence of bacteria near the wound suggests that bacterial infection may result from Varroa feeding, possibly further contributing to disease in bees.

So, pedantically it’s not phoresy

So-called phoretic mites, unless they’re on the thorax or head of the bee, are not really phoretic. They are being carried about, but they are also likely feeding. By definition that excludes them from being phoretic.

Instead they are ectoparasites of adult bees.

What are the chances that beekeepers will stop using the term phoretic?

Slim to none I’d predict 6.

And, of course, it doesn’t really matter what the correct term for them is.

What’s more important is that beekeepers remember that it’s at this stage that mites are susceptible to all miticides.

The June gap

But it’s also worth thinking about the potential impact of brood breaks.

During brood breaks all the mites in the colony must be ‘phoretic’.

Generally, the majority of the mites in a hive are in capped cells. Depending upon the stage of the season, the egg-laying rate of the queen and other factors, up to 90% of the mites are associated with developing pupae.

But as the laying rate dwindles more and more mites are released from cells and become ‘phoretic’, unable to find a suitable late-stage larva to infest.

And which bees do the mites associate with?

Nurse bees primarily, for reasons I’ll discuss in the future. But – spoiler alert – one of the reasons is likely to be that they have a larger fat body.

So, a mid-season brood break (e.g. the ‘June gap’) is likely to result in lots more nurse bees becoming both the carriers and the dinner of the mite population.

Some or many of the nurse bee cohort may perish, perhaps from damage to the fat body or from the viruses acquired from the mite. However, bees exhibit phenotypic plasticity, meaning that older bees can revert to being nurse bees when the queen starts laying again.

Late season brood breaks

In late summer mite levels are usually at their highest in the hive. A brood break occurring now will release a very large number of mites to parasitise the adult bee population.

Presumably these mites select the bees best able to support them 7.

And which bees are these? The nurse bees of course. But it’s also worth remembering that there are key physiological similarities between nurse bees and winter bees. Both have low levels of juvenile hormone and high levels of vitellogenin (stored in the fat body).

So I’d bet that the ‘phoretic’ mites during a late season brood break would also preferentially associate with any early-produced winter bees.

Furthermore, once the queen starts laying again – perhaps in early/mid-autumn – the winter bees being produced would be subjected to the double-whammy of high levels of mite infestation and potential damage from ‘phoretic’ mites.

Practical considerations

More work is required to model or actually measure the impact of late season brood breaks, high levels of ‘phoretic’ mites, nurse bee numbers and winter bee development.

Compare two colonies of a similar size with a similar mite load, treated at the same time in early autumn with an appropriate miticide. If one of them experienced a late summer brood break (pre-treatment) and consequent high levels of ‘phoretic’ mites, does this reduce the chances of the colony surviving overwinter?

Who knows? Lots and lots of variables …

Fundamentally, it remains important to treat colonies early enough to protect the winter bee population. You’ve heard this from me before and you’ll hear it again.

However, it’s something to think about and I can see ways in which it might influence the strategy and timing of mite control used. I’ll return to this sometime in the future.


 

Chewin’ the fat

A little over a year ago reports started to circulate of a study showing that Varroa feed on the fat body of bees rather than on haemolymph.

Having worked in Glasgow through the early noughties the title of this post was a no-brainer and an outline draft was written in December 2017. However, the peer-reviewed paper wasn’t published until last month, so it’s only now we’ve got the chance to judge the study and consider its implications.

Varroa feed on hameolymph, right?

Historically this was the accepted dogma. However, the experimental data supporting this conclusion – based upon labelling bees with radioactive isotopes and seeing what the mites acquired after feeding – was really not definitive. The experiments had been done in the 1970’s and the specificity of the labelling was a bit dubious. In addition, during the intervening period scientists had determined that, unlike vertebrate blood which is rich in cells and nutrients 1, haemolymph has little of either and is actually a pretty lousy food source.

In addition, and somewhat more circumstantially, Varroa control using chemotherapeutics fed to bees (and subsequently taken up by the mite during feeding) had been relatively disappointing.

Perhaps these chemicals weren’t getting to the right tissues of the bee?

Perhaps Varroa don’t feed on haemolymph after all?

The Ramsey study

This new study reports three independent experiments that, together, indicate that Varroa actually feed on the fat body of bees, rather than on haemolymph. The paper is so-called ‘open access’, so anyone can access it and therefore I’ll just provide a synopsis of the important bits.

The questions Samual Ramsey and colleagues attempted to answer were:

  1. Where on the bee do mites feed? Is it primarily or exclusively near the fat body?
  2. When Varroa feeds, what host tissues are ingested?
  3. What sort of diet is required to maintain Varroa and allow their reproduction in vitro2.

Location, location, location

The authors counted phoretic mites on 104 bees. Over 95% of them were located on the underside of the body, predominantly on the left side of the bee, under the tergite or sternite3 on the third metasomal segment (i.e. the second visible segment of the abdomen).

Mite location on nurse bees

Mite location on nurse bees

This position is consistent with feeding on the fat body tissues which are most abundant under the inner ventral surface of the metasoma.

Seeing red

Bees were fed with Nile red, a lipophilic fluorescent stain that preferentially accumulates in the fat body. They co-fed bees with uranine, a differently coloured fluorophore that accumulates in the haemolymph. They then allowed mites to feed on the fluorescently labelled bees and subsequently photographed the mites under fluorescent light.

The rationale here was straightforward. If the mites fed on the fat body they would stain red due to taking up the Nile red stain.

Mites visualised after feeding on fluorescently labelled bees

Mites visualised after feeding on fluorescently labelled bees

Which they did.

It was notable that the red stain predominantly accumulated in the rectum and gut of the mite (image O above). The authors conducted all sorts of controls to confirm that the stains actually stained what they were supposed to – you can view these in the paper.

Babies!

In the final part of the study the authors maintained mites in vitro (in an incubator), feeding them on a diet containing increasing amounts of fat body or haemolymph. These are tricky experiments and in some way the least satisfactory part of the study.

Two results suggest that fat body was beneficial or essential to the mites. Firstly, only mites that had 50% or more fat body in the diet survived for 7 days. Secondly, there was a dose response to the amount of fat body in the diet and fecundity. Mites on a 100% fat body diet exhibited 40% fecundity, the highest level observed in the study.

What can we conclude from the Ramsey study

Of the three experiments presented, the Nile red fat body stain uptake by mites is reasonably compelling.

The feeding position study is essentially correlative, but there could be other interpretations of the data. For example, that location on the bee might be the least accessible to a ‘grooming’ bee. Perhaps it’s a survival mechanism?

Survival and fecundity in in vitro studies wasn’t great. However, in defence of the authors, fecundity of mites under natural conditions can be as low as 40% and is not higher than 80%. Not all mites have baby mites. Thankfully.

Only 20% of the mites survived one week under in vitro conditions, even on a 100% fat body diet. In contrast, mites fed haemolymph alone died within 48 hours. This poor level of survival was surprising and suggests other essential components of the diet were probably missing.

Other published studies have shown reasonable survival of Varroa for at least 3 days, with at least one report of mites surviving on flowers for up to 7 days. I’m also aware that other laboratories can maintain mites in vitro for longer than 7 days without using any honey bee-derived components in the diet.

Hang on … what is the fat body anyway?

The fat body is multi-functional. It has been compared to the vertebrate liver and adipose tissue. It acts as a major organ for nutrient storage, energy metabolism and detoxification of things like pesticides.

Vitellogenin made by and stored in the fat body reduces oxidative stress and is associated with extending the longevity of overwintering bees. The fat body also has critical roles in metamorphosis.

So, not only multi-functional, but also very important.

Significance of the results … is this a game changer?

This paper has been discussed online as a ‘game changer’. That’s probably a bit strong. Whilst the fluorescent stain uptake study is reasonably convincing it must be remembered that it was conducted on adult bees.

Do mites on pupae also feast on the fat body?

This will have to be determined in the future. It’s a more difficult experiment of course.

The other two studies, and a number of additional small observations I’ve not discussed here, are certainly supportive, but not alone hugely convincing. The in vitro study in particular will be interesting to compare with (currently unpublished) studies from other laboratories that do not use honey bee fat bodies in their mite feeding and maintenance diet.

Practical matters

Does it matter what part of the bee the mite feeds on?

Clearly it does for the mite, but what about the beekeeper?

I think this study is significant for the beekeeper for two reasons – the first will only be relevant if and when lipophilic miticides are developed, the second matters right now.

  1. Strategies are being developed to add highly specific miticides to the diet of bees which are then delivered to Varroa when the mite feeds. To date, these have been rather underwhelming in their performance. If Ramsey is right, modification of these miticides to make them lipophilic (like the Nile red fluorphore) will concentrate them in precisely the right place to ensure the mites get a lethal dose.
  2. A key product of the fat body is vitellogenin. The long-lived overwintering bees have high levels of vitellogenin. Mites feeding on, and depleting, the fat body would be expected to result in reduced vitellogenin levels in the bee 4. This would explain why high Varroa levels are associated with reduced longevity of winter bees and consequently increased overwintering colony losses.

The most important take home message

To prevent mites that feed on fat bodies from damaging vitellogenin production miticides have to be used early enough to protect the winter bees.

In the paper Ramsey makes the statement:

Simple reduction of mite loads late in the season to decrease the overwinter parasite load may not be enough, as it still allows for the mites to damage tissue critical to the process of overwintering …

Instead …

A treatment schedule that includes treatment in late summer or early fall before mites can significantly damage fat body in developing winter bees would likely be more effective.

Which is precisely the point I’ve made previously about treating early enough to protect winter bees.

What the Ramsey paper adds is the piece of the jigsaw possibly explaining why late summer treatment is so important.


Colophon

Chewin’ the Fat was a four-series Scottish comedy sketch show. It was broadcast from 1999 to 2002, with further Hogmanay specials until 2005. The show had a recurring cast of characters and sketches including The Big ManThe Banter BoysThe Lighthouse KeepersBallistic Bob and Taysiders in Space.

Gonna no' dae that

Gonna no’ dae that – The Lighthouse Keepers

Chewin’ the Fat was filmed in and around Glasgow (where I worked at the time) and the characters parodied a range of local ‘types’ … pretentious Kelvinsiders, Glaswegian gangsters, narcissistic golfers, The man from Kilmacolm, and shellsuit-wearing, chain-smoking, hard-drinking Glaswegian neds.

It was a bit rude and definitely an acquired taste. Without subtitles, some of the scenes would probably have been unintelligible south of the border.