Tag Archives: Terry Clare

The most fun you can have in a beesuit

Synopsis : Queen rearing is enjoyable and educational. Don’t let the experts put you off. You don’t need to graft day-old larvae to rear queens.

Introduction

A long time ago 1 I bought, read and re-read Ted Hooper’s excellent book Guide to Bees and Honey. Every time I read it I’d find something I’d missed the last time and, even now, there are nuanced comments I think I am only now beginning to understand.

I’m exaggerating slightly when I say ’read and re-read’ as there was one chapter I pretty-much skipped over each time.

That was the chapter on queen rearing.

What put me off?

It was probably his description of opening queen cells with the tip of a penknife to check how far development had progressed, re-sealing the cell and returning the frame to the hive.

She’s gone …

I knew enough about bees to know that the future success of the hive depended upon it successfully requeening after swarming.

But I didn’t know enough to stop them swarming 😉 .

I’d also already had to ‘borrow’ a frame of cells from a friend to rescue a terminally queenless colony of mine. ’Enthusiastically clumsy’ defined my beekeeping skillset, and was probably the comment the 2 examiner made in his notes during my BBKA Basic assessment.

The prospect of meddling with developing queens, with something so precious, seemed like total madness.

Surely it’s better to let them get on with it?

For the first couple of years of beekeeping, I thought of queens as an exquisitely fragile – and by implication valuable – resource. The prospect of rearing them, handling them, putting them in little boxes or – surely not? – prising a cell open to see if they’d developed sufficiently, was an anathema to me.

Consequently, I repeatedly skipped the chapter on queen rearing.

Too difficult … not for me … nope, not interested.

The BBKA Annual Convention

Before they moved the event to Harper Adams, the BBKA used to hold its spring convention at the Royal Agricultural showground just outside Warwick. My (then) local association provided stewards for the event and I was asked – or volunteered – to help the late Terry Clare run the queen rearing course one year.

I’d never done any queen rearing … and still hadn’t completely read that chapter in Hooper’s book.

I’d like to take this opportunity to apologise to those who paid to attend the course … at least those who received any ‘help’ from me, though everything else about the course was very good.

Checking grafted larvae

Checking grafted larvae

After an introductory lecture from Terry, we spent a warm afternoon in a poorly lit room practising grafting larvae. A thin cloud of disorientated bees circled our heads before being ushered out through the windows. Most of the larvae on the frames were visible from across the room 3 but at least they didn’t turn to mush with our neophyte fumblings as we transferred them from comb to plastic queen cups.

Terry moved from table to table, checking progress. He explained things well. Very well. The preparation and procedures seemed a whole lot more accessible than they had in Hooper’s book.

I’m a reasonably quick learner and that afternoon convinced me I should, and could, at least try it on my own.

The session ended with a wrap-up lecture in which Terry encouraged us all to ‘have a go’, and not be put off by an initial lack of success.

He assured us it would be worthwhile and enjoyable.

We dispersed into the late afternoon sun, talking of bees and queens and our plans for the season ahead.

Balmy April weather

There was an early spring that year, colonies had overwintered well and were strong. The Convention was held in early April if I remember and the good weather continued for at least another 2-3 weeks.

Well before the end of the month I had my first successfully grafted larvae being reared as queens.

Success!

It wasn’t an overwhelming success.

I probably grafted a dozen, got half accepted, lost more during development 4 and ended with just two virgins. I don’t have notes from those days, but I’m pretty sure only one got successfully mated.

So, success in a very limited way, but still success 🙂 .

It still makes me smile.

Terry’s presentation had clarified the mechanics of the process. It no longer seemed like witchcraft. It was all very logical. He’d made it clear that the little specialised equipment needed was either ’as cheap as chips’ 5 or could easily be built at home by someone as cack-handed as I was am 6.

The practical session had given me confidence I could see and manipulate huge fat larvae that were far too old to be reared as queens larvae. Even with my ’hands like feet’ moving a delicate larva from comb to plastic queen cup seemed possible, if not entirely natural.

JzBz plastic queen cups

I scrounged some JzBz cups from someone/somewhere, built a cell bar frame and some fat dummies 7 the week after the Convention and used one of my colonies as a cell raiser and the other as the source of larvae.

And, at a first approximation, everything sort of worked.

I could rear queens from larvae I had selected 🙂 .

Try, try and try again

I repeated it again the following month. I was more successful. The nucs I produced were either overwintered or built up strongly enough to be moved into full hives.

I think one went to my mentee. My association encouraged relative newcomers to mentor, probably one of the best ways to improve your beekeeping (other than queen rearing).

Within a year I had 6-8 colonies or nucs and twice than number the year after that.

Almost all were headed by queens I had reared … ‘almost’ as my swarm control skills were still developing 😉 .

Now, over a decade later, my swarm control skills have improved considerably … as has my queen rearing.

I remain resolutely cack-handed but I’m now a lot more confident in my hamfistedness.

I still mainly use the same technique Terry Clare taught on that course in Stoneleigh, though I’ve now also used a number of other approaches and successfully reared queens using most of them. Even the cell bar frame I built is still in use, though I’ve built some fancier fat dummies.

Fat dummy with integral feeder

Fat dummy … with integral feeder and insulation

Queen rearing has taught me more about keeping bees than any other aspect of the hobby … more about judging the state of the colony, the quality of the bees, the suitability of the environment, the weather, the forage etc.

Queen rearing has improved the quality of my bees, year upon year, so that they suit my environment and colony management.

But – more importantly and perhaps a little selfishly – queen rearing has given me more enjoyment than any other aspect of beekeeping.

I’d prefer to rear queens than get a bumper honey crop … but because I rear queens that suit me and the environment, I do pretty well for honey as well.

10%

I give 20-30 talks a season to beekeeping associations. When I’m talking about queen rearing I usually ask the organisers about the number in their association that actively rear queens.

By actively I mean that do more than simply allow colonies to requeen themselves during swarm control. Don’t get me wrong, I’m not denigrating this essential aspect of beekeeping. We all (have to) do it.

To me ‘active’ queen rearing doesn’t necessarily mean grafting larvae, incubators, mini-nucs and all that palaver. But it does mean:

  • preparing a colony to be in a suitable state to rear new queens 8.
  • rearing queens from larvae selected (though not necessarily individually selected) from a colony with desirable characteristics e.g. good temper, productivity, frugality.
  • rearing more than one queen at a time, with the excess used for making increase, for sale, for ’just in case’ situations etc.

There’s perhaps a slightly grey area where you split a hive (with desirable characteristics) that’s making swarm preparations into multiple nucs, each of which gets an immature queen cell.

But, let’s not get bogged down in definitions … that’s not the point of this post (which, although it might not be obvious yet, is to encourage you to ’have a go’).

And, when I ask 9, I’m regularly told that only a small number, perhaps ~10%, of association members actively rear queens.

Why so few?

Enjoyable, educational, useful … choose any three

Of course, there’s no requirement that a beekeeper gets involved in queen rearing. You can keep bees for years without rearing queens, other than during swarm control and by making up splits. I know a few beekeepers who have been keeping bees like this for decades … by many criteria they are skilled and successful beekeepers.

But sometimes, which might mean ‘often’, being able to rear queens and having some of those ‘spare’ queens available is extremely useful.

Spare queens, heading nucs in the apiary, can be overwintered to make up losses. These can be sold or donated in Spring to meet the enormous 10 demand for bees early in the season. The availability of a queen can ‘fix’ an aggressive colony, can rescue an otherwise doomed colony, or can effectively ‘gain’ a month of brood rearing and nectar collection should the old queen fail.

And that extra month of brood might make the difference between successful overwintering or not.

In my view, once you can rear your own queens you are pretty-much self-sufficient … there are very few situations that cannot be rescued.

And all of those benefits are before you even consider the two other things I mentioned above:

  • that successful queen rearing will inevitably improve your more general skills as a beekeeper, and
  • you will get a lot of satisfaction and enjoyment from doing it … literally ’the most fun you can have in a beesuit’ 11.

Why so few?

Beekeeping, like many other hobbies, can appear an esoteric pastime. Weird terminology, hierarchical organisation 12, specialised equipment, unusual costumes and a tendency to still use arcane practises.

And queen rearing – probably like candle making or the production of excellent mead 13 – is a specialised niche within what is already a rather niche activity.

It has its own terminology, equipment and methods.

To the uninitiated – even to another beekeeper, like me reading Ted Hooper’s book – it can appear fiendishly difficult.

And, unfortunately, some practitioners make it sound esoteric, specialised and difficult.

It’s a sort of one-upmanship.

They promote methods that may not suit the beginner, that require lots of resources, or that involve techniques that sound exceptionally skilful, even when they’re not. Not deliberately perhaps, but that’s what happens.

All of which means that:

  • people are dissuaded from trying it in the first place
  • those that do try (with trepidation because, you know, ”it’s difficult”) and that achieve only limited success, have their initial impression reinforced and are unlikely to try again

It’s very easy to talk yourself out of trying something you think will be difficult and/or you are unlikely to succeed at.

Actually, it’s not only easy, it’s also entirely understandable.

Why go to all that trouble if it’s unlikely to work?

After all, you can usually buy queens ‘next day delivery’ for £50 … surely that would be easier?

Perhaps … if they’re available when you want them. Really early in the season? Think again. During the peak swarming season when everyone else wants to requeen their colonies they accidentally destroyed all the queen cells in. Nope.

But, as Terry Clare so ably instructed … it is not that difficult to rear your own.

There’s more than one way to do it

I’ve written an entire post on this topic and it applies as much to queen rearing as it does to other aspects of our hobby.

If not more.

There are many different ways of successfully achieving the three key components of the process:

  1. preparing the colony to receive larvae
  2. presenting the larvae
  3. getting the resulting virgin queens mated

Today’s post isn’t an introduction to queen rearing … it’s meant instead as an encouragment to try queen rearing.

If you’ve got a year or two of beekeeping experience and one, or preferably two, colonies you have the essentials you need to start. It’s what I started with … and look how that ended 😉 .

Over the next three months I’ll write two or three more posts on the basics, in good time for you to ’have a go’ in 2023.

Preliminary setup for Ben Harden queen rearing

If you’re impatient to read more, I’ve already written about two methods I have used extensively – the Ben Harden system and queen rearing with a Cloake board.

However, throughout these descriptions I’ve emphasised the use of individual grafted larvae.

Grafting is the transfer of larvae from the comb where the egg hatched to a wax or plastic queen queen cup. For best results the larvae should no more than ~18 hours old.

A suitable larva may well be no bigger than the egg it hatched from.

Already I can feel beginners switching off … “Too difficult … not for me … nope, not interested.”

Although grafting is an easily learned and reasonably straightforward technique it can appear very daunting to the beginner.

Perhaps I’m therefore also guilty of making queen rearing sound ‘esoteric, specialised and difficult’.

Am I guilty as well?

Indubitably, m’lud.

But … in my defence please consider the two recent posts on Picking winners.

The purpose of those posts was to highlight – for people (like me) that already routinely use grafting as part of their queen rearing – that the bees may choose different larvae to rear as queens than the beekeeper might choose.

The beekeeper is essentially non-selective, whereas the bees are very selective.

I think this is interesting and it’s got me wondering about the qualities the bees select and whether they’d be beneficial for my beekeeping.

But there’s another equally important ‘take home message’ from these two posts. This is relevant to beekeepers who do not already rear queens (but who would like to) but that are put off by the thought of grafting.

And that is that you can easily produce excellent quality queen cells without grafting or ‘handling’ larvae at all.

If you refer back to that three point list above, point 2 ( ‘presenting the larvae’) can be as straightforward as simply adding a frame of eggs and larvae to a suitably prepared hive.

That’s it.

What could be easier?

No magnifying glasses, no headtorch, no treble ‘0’ sable paintbrush, no JzBz plastic cups, no cell bar frame, no ’do I or don’t I prime the cups with royal jelly?’, no desperate searching around the frame for larvae of the right size, no worries about larvae getting chilled, or drying out …

Pick a frame, any frame

As long as it has eggs and young larvae … and comes from a donor colony that has the characteristics you like in your bees.

Eggs and young larvae

Eggs and young larvae

There’s little point in rearing queens from poor quality bees.

For starters I’d suggest you select a frame from a colony of calm, well behaved bees.

If none of your colonies are dependably calm and well behaved you definitely need to learn to rear queens, but you should ask a friend or mentor 14 for a frame of eggs and larvae from a good colony.

Bees are very good at picking larvae suitable for rearing into queens. Let them do the ‘heavy lifting’. Once the queen cells are ready you cut them out of the frame and use them in the same way as you would use cells from grafted larvae.

So, having hopefully convinced you that you don’t need to graft larvae to produce queen cells, that seems like a logical place to end this post.

In future posts I’ll discuss points 1 and 3 in that numbered list above.

You already know almost everything you now need to know about point 2 😉 .


 

More queen rearing musings

Synopsis : What happens when your queenright cell raiser swarms? Are cells being reared under the supersedure response doomed? This and other musings on miscellaneous aspects of queen rearing, together with some comments on clearing supers on queenless hives.

Introduction

I described queen rearing last week as The most fun you can have in a beesuit ™. That’s my opinion. You may prefer making candles, or beeswax wraps or extracting and jarring honey 1 and I wouldn’t argue, though none of them come close to the satisfaction I get from queen rearing.

The term ‘queen rearing’ sometime conjures up images of booming, chest-high queenless cell starters, dozens of grafted larvae on each cell bar frame, incubators and serried rows of mini-nucs waiting for virgins … or even clinical instrumental insemination apparatus.

Capped queen cells

Capped queen cells on a cell bar frame (produced using the Ben Harden queenright queen rearing approach)

This is the industrial scale production of queens, and it’s rare that enthusiastic but nevertheless small-scale amateur beekeepers need that number of queens.

Or have the resources to produce them.

For convenience I think of queen rearing as an activity that can occur at three different scales:

  1. One or two queens at a time – e.g. adding a frame of selected (i.e. good quality) eggs/larvae to a terminally queenless hive. Surplus cells can be cut out and distributed elsewhere.
  2. Five to ten at a time – often using selected larvae transferred to a cell starter colony by grafting, a Cupkit-type system, cell punching or (fewer manipulations still) the Miller or Hopkins methods.
  3. Dozens of queens at a time – almost always using grafting and a strong queenless cell starter colony.

I’ve run 10-20 colonies for a decade or more and rarely need more than 20 queens a season (a number which includes some spares to make up nucs).

In addition, I live in an area with variable (i.e. often poor) weather where queen mating can be ’hit and miss’.

Little and often

For these reasons I prefer to produce a few queens at a time so I don’t have to devote significant resources to an activity that might be thwarted by a month of lousy weather.

I’d rather try and produce half a dozen queens three or four times a season, than dozens at once.

The latter requires a major commitment of resources (colonies and equipment). Depending upon the weather I might end up with a glut of queens.

Or an apiary-full of laying workers 🙁

In contrast, the methods I use allow me to produce a handful of queens every few weeks. If the weather is kind, all will get mated. If not, it’s not a total disaster.

West coast weather, mid-May to mid-June 2022 (average 13°C, range 6.2°C to 23.9°C)

Over the last month we’ve only had 2-3 days with conditions normally associated with successful queen mating i.e. light winds, sunshine and temperatures of 20°C.

Predicting this type of ‘weather window’ 2-3 weeks in advance is almost impossible.

It’s better to be prepared to repeat things again.

And again 😉

Apiary vicinity mating

In fact, queens don’t need ‘perfect’ conditions for mating. If they did, sustainable beekeeping 2 would be impossible – or at least very difficult – in many northern latitudes. Queens can be successfully mated in sub-optimal conditions 3.

Part of my interest in monitoring the local weather at my apiary is to try and determine just how poor the conditions can be whilst still getting queens mated.

Native Apis mellifera mellifera (black bees) are reported to use apiary vicinity mating (AVM) and so may not need optimal conditions to fly to distant drone congregation areas. Jon Getty has written more about AVM on his website.

However, wherever or whenever they get mated, I prefer to produce repeated batches of queens using queenright cell raisers. By doing this I’m not putting all my ‘eggs in one basket’. Essentially these cell raisers are standard (honey) production hives manipulated in simple ways to provide the conditions needed to rear suitably-presented larvae as queens.

And inevitably, because they’re queenright, things can sometimes go wrong 🙁

Queenright queen rearing

The two methods I’ve used are the Ben Harden approach and a Morris board. Both use a single colony to start and finish the queen cells, and the queen remains present – albeit separated from the developing cells – throughout the 10-12 days from grafting until the cells are used.

The Morris board

A Morris board is essentially the same as a Cloake board. These are boards that separate the queenright lower brood box from an upper brood box in which the queen cells are produced. The board has an integrated queen excluder and the provision to separate the upper and lower box with a metal or plastic divider.

Morris board (lower side)

With the divider inserted queen cells are started in the top box under the emergency response. However, once started, the divider is removed and the cells are finished under the supersedure response.

The Morris board is more complicated than a Cloake board; it is used with a divided upper brood box – allowing separate batches of cells to be started every week or so – and has a series of doors for bleeding off and redirecting returning foragers to the correct compartment.

It’s a clever idea and one that shows considerable promise for my queen rearing.

I’ll write more about my use of a Morris board in due course, or you could track down the article Michael Badger wrote in Bee Craft.

The Ben Harden approach

I’ve discussed the Ben harden approach extensively already – try here for starters. The method, although perhaps popularised by the eponymous Irish beekeeper (and excellent instructors like the late Terry Clare) was also described nicely by the National Bee Unit’s Mike Brown and David Wilkinson twenty years ago in the American Bee Journal 4.

Preliminary setup for Ben Harden queen rearing (note the ‘fat dummies’ occupying much of the upper box)

Until the last couple of years this is the method I’ve used for most of my queen rearing.

The queen is confined below a queen excluder to the lower brood box. Grafted larvae are added to the upper box, space within which is often restricted by the use of ‘fat dummies’.

The queen cells are therefore started and finished under the supersedure response.

Supersedure vs. swarming responses and colony swarming

In preparation for swarming a colony naturally produces several charged queen cells 5. Assuming the weather is suitable, the colony usually swarms on the day that the first cells are sealed.

If the weather is poor then swarming is delayed, but they often then go at the first opportunity … so much so that even a borderline day after a period of poor weather during the normal swarming season is often characterised by lots of swarms.

In contrast, newly sealed supersedure cells – and these are usually very few in number (often just one) – are incubated for a further 8 days until emergence of the virgin queen.

The superseding colony does not swarm.

The new queen goes on a few mating flights and starts laying.

At some point after that the old queen simply disappears.

One day you’re surprised to find two laying queens in the hive but at the next inspection (or the one after that) only the shiny new one remains.

The queen is dead, long live the queen.

Advantages (and disadvantages) of queenright queen rearing methods

For the small scale beekeeper – perhaps 2-20 colonies – queenright methods offer a number of advantages (with a few disadvantages) for queen rearing:

  • the quality of the cell starter/finisher is immaterial as long as the colony is strong. You simply provide it with larvae from good quality stock.
  • no interruption 6 to nectar collection. In a good nectar flow you simply keep piling on supers as needed and the bees raise the cells and fill the supers.
  • if there’s no nectar flow you will have to feed the colony, so you must remove any supers to avoid tainting any stored nectar with syrup.
  • if you do simultaneously use the colony for honey production and cell raising the hive can get tall and heavy. Mind your back.
  • you can use a single hive for the entire process if needed; cell starter, sourcing larvae, cell finisher and populating mini-nucs. You might even get some honey as well 😉 7

The queenright methods outlined above exploit the supersedure response for cell raising. This means that the colony will not swarm in response to capping of the cells in the upper box.

But …

That is not the same as saying that the colony will not swarm 🙁

Don’t forget, there’s a laying queen in the bottom box. She will continue to lay while the new cells are being started, fed, nurtured and sealed.

And if she runs out of space the colony can still make swarm cells in the bottom box and so may swarm.

Here are a couple of examples where this has happened … and the consequences for my queen rearing.

A swarming Ben Harden cell raiser

When I lived in the Midlands I routinely started queen rearing during April. Queens produced in April could be mated as early as the first week of May in a good year, and occasionally, even earlier.

Colonies got a massive boost during this part of the season from the oil seed rape. The photo below is from the 19th of April 2014.

Mid-April in the apiary ...

Mid-April in a Warwickshire apiary …

When rearing queens using the Ben Harden approach during a strong nectar flow you can safely relocate the upper brood box above the top super. In a busy hive the developing cells still get more than enough attention.

In addition, this can help increase ‘take’ 8 by reducing the concentration of queen pheromones due to the separation of the bottom brood box (containing the original queen) and the box containing the grafted larvae.

When using this method it is important to check the upper box for queen cells on the day the grafts are added. This box, being separated from the queen-containing brood box, has reduced queen mandibular, and no queen footprint, pheromones.

Consequently, it’s not unusual for the bees to start drawing queen cells. These must be destroyed or – being more advanced than the grafted larvae – they will emerge first and destroy all your hard work.

I had done this and added the grafts which, on checking 24 hours later, had all been accepted.

Chipmunks are Go! 9

Out of sight is out of mind

However, I had failed to check the bottom box for queen cells on the days before I added the grafted larvae.

The colony promptly swarmed, probably before the newly developing queen cells were capped.

This was either before I routinely clipped my queens, or I’d missed this particular queen. Whatever, she and a significant proportion of the bees disappeared to pastures new.

I can’t remember how (or when) I realised the colony had swarmed. It might have been reduced entrance activity during the strong OSR nectar flow, or I might have just (finally!) conducted a regular inspection.

The bottom box contained sealed queen cells, no queen and no eggs 🙁

But, all was not lost.

The cells containing grafted larvae were capped and looked good. They’d clearly received sufficient attention 10 and I was therefore hopeful they’d emerge, mate and produce usable queens.

And they did.

I knocked back all the sealed queen cells in the bottom box and then – on the day I used the cells from the grafted larvae – added one of the latter to the lower brood box.

I removed the queen cells in the lower box for two reasons:

  • it prevented a new queen emerging there while I had cells above the queen excluder, and
  • it allowed me to use a cell raised from larvae sourced from a better quality colony.

So, a swarming cell raiser isn’t necessarily a disaster.

A more recent, but less successful, attempt

My first attempt at queen rearing this season involved using a Morris board.

I added the Morris board and upper brood box on the 18th of May. I then did all of the necessary Morris board manipulations – closing the slide, opening entrances, closing others – to pack the upper box with bees.

On the 25th I did the grafting and – at the same time I added the grafts on the cell bar frame – I destroyed a small number of queen cells in the upper box 11.

On the following day 7-8 of the larvae had been accepted and the cells were capped on or around the 30th.

Cell bar frame festooned with bees

I was off beekeeping elsewhere so didn’t check the hive again until the 1st of June … and was dismayed to find all of the cells had been torn down.

Torn down queen cells. The cell on the right has a gaping hole on the opposite face.

There was no queen in the upper box and the queen excluder was intact. The cells appear to have been torn down by workers. I’ve had this happen before when there’s been a dearth of nectar, but this box was getting 300 ml of thin syrup every 48 hours.

D’oh!

Of course, I eventually checked the bottom box and found:

  • one vacated queen cell. This cell was situated on the lower edge of one of the central frames.
  • a virgin queen running about and no sign of the original clipped and marked queen 🙁

The single queen cell might suggest supersedure. However, its position (though far from a reliable indicator) was more like that of a swarm cell.

A vacated queen cell

In addition, the absence of eggs or any sign of the original queen, strongly suggested that the colony had swarmed. This probably happened – coincidentally – on the day the cells containing the grafts were sealed.

I say ‘coincidentally’ because I suspect the swarming was triggered by emergence of the new queen in the lower box and had nothing to do with my grafted larvae. That would fit with two things – the timing of the previous inspection (18th) and the fact that swarming is delayed when the incumbent queen is clipped.

However, because she was clipped, the colony was not depleted of workers. The original queen was lost, but that was all.

An alternative interpretation would be that the new queen simply did away with the original queen.

But why were the cells containing grafted larvae torn down?

One possibility was that the new queen pheromones were sufficiently strong that the workers realised they didn’t need additional queens. Alternatively – though she wasn’t by the time I saw her – I suppose there’s a possibility that the virgin queen was small enough to squeeze through the queen excluder, slaughter the developing queens, and squeeze back down to the lower box.

Learning from my mistakes 12 

Both examples above were due to my not maintaining a proper inspection schedule on the lower, queenright, brood box.

Guilty, m’lud.

Despite the advantages outlined above, cell rearing colonies should still be treated in the same way – vis-à-vis regular inspections – as any other production hive.

Other than forgetfulness, sloth and stupidity 13 there’s no reason not to inspect the lower brood box properly on a 7 day cycle.

Once the larvae are accepted you can remove the upper box (and all the bees it contains), gently set it aside and go though the bottom box. The workers with the developing queen cells will look after them for the 10 minutes or so this takes.

Conversely, there’s no reason to interfere with the upper box other than to check acceptance and confirm, in due course, that the cells are sealed. If you assemble the queenright cell rearing colony and wait a week before adding grafts to the upper box (as described above) they cannot start new queens from anything other than the larvae you add.

What else would you be looking for?

Just one more thing 14

There were several comments last week about honey production in queenless colonies.

I collected more supers on Monday containing spring honey. This included recovering supers from several queenless (or currently requeening – some may have contained virgins) colonies.

I have previously noticed that supers are cleared less well – using my standard clearer boards overnight – from queenless colonies.

A not-cleared-as-well-as-I’d-like super above a queenless colony

You always get a few bees remaining in the super, but there were consistently lots more in queenless colonies.

I didn’t count them … few is less than some, which is quite a bit less than lots, which – in turn – is appreciably less than ‘did I put the clearer on inverted?’

This was the second batch of supers I’d collected, a week after the first. I’d left the supers on longer because:

  • there were too many to transport
  • some still had unripe nectar which failed the ‘shake test’ over a hive roof (see photo below), indicating that the water content was too high to extract without risking the honey fermenting

Unripe nectar is easy to shake out of super frames.

Luring the bees down from the supers

In an attempt to speed up clearing bees from the supers of queenless colonies I added the clearer underneath the full supers, but on top of a wet super from which I’d already extracted honey.

A wet super being used to ‘lure’ bees down from full supers in a queenless colony

This worked well.

The heady smell of honey 15 in the wet super resulted in significantly fewer bees in the cleared supers.

I have to transport these cleared supers ~200 miles back home for extraction. If I had a trailer or a truck a few stragglers wouldn’t normally be an issue.

But I don’t … these supers are in the car with me.

Biosecurity

Actually … stragglers would still be an issue, even with a trailer/truck.

My Fife bees have Varroa (low levels, but it’s definitely present) but my west coast bees do not. I take biosecurity seriously and don’t like finding any bees in the car after the journey.

I also really don’t like finding bees in the car at 65 mph on the A9 … and, if I do, I stop and let them out.

The combination of the better-cleared supers and a sharp thwack on any frames with adhering bees reduced the stowaways to zero.

And the five hour return journey 16 was notable for stellar views of an osprey, a stunning male hen harrier and the sun setting over Creag Meagaidh 🙂


 

 

Measure twice, cut once

Swear often 😉

I’ll return to cursing shortly … bear with me.

The autumn solstice is long gone and we’re fast approaching the end of British Summer Time 1. For most northern hemisphere beekeepers this means that there may be five months of ‘not beekeeping’ before we start all over again.

Of course, there are things we have to do with the bees in the intervening period.

The hive entrances must be kept clear so they can get out on the inoffensively named ‘cleansing flights’ when needed. There will be a winter miticide treatment to apply … probably long before midwinter. It is also important to keep an eye on the weight of the hive – particularly as brood rearing starts in earnest in late January and February – to ensure the bees do not starve.

But those three things aren’t going to fill anything like five months, so there is bound to be some time ‘spare’ over the coming months.

The elasticity of time

Although the year contains twelve about equal length months, those of us who keep bees in temperate northern countries experience a strangely warped calendar.

This is what it feels like … the beekeepers year

Apparently the months only vary in length by ±3 days. May and December contain the same number of days, but May disappears in the blink of an eye, whereas December can drag on interminably.

Weirdly there appears to be an inverse relationship between the available daylight to work in, and the amount of time it feels as though you have available to actually get the various beekeeping tasks completed.

This surely defies the laws of physics?

All of which means that beekeepers often have little free time in the summer and ample free time in the winter.

Some wise beekeepers have a busman’s holiday and go to New Zealand to tour apiaries (and – more to the point – vineyards).

Others catch up with all of the non-beekeeping activities that apparently ‘normal’ people do … like the decorating, or building model railways, or flamenco dancing 2.

Getting creative

But if you still want to dabble with a bit of beekeeping – in the broadest sense of the word –  through the cold, dark days of December and January 3 there are all sorts of things you can do. 

Many years ago I wrote an irregular column for my then beekeeping association on do-it-yourself (DIY) for beekeepers.

It was irregular because my use of punctuation has always, been suspect, and because it didn’t appear each month. 

That column eventually morphed into this website 4.

In fact, some of the very earliest articles were almost lifted verbatim from the beekeeping monthly newsletter.

I wrote about DIY because it was something that:

  • brought me a lot of satisfaction
  • saved me a few quid
  • improved my beekeeping

Now, a decade or more later, I still use the winter months to do the majority of my beekeeping-related DIY 5.

It’s only in the winter that I have the time to think things through properly before rummaging through the wood offcuts box and actually building something.

Measure twice, cut once

Which brings me back to the start of this post.

The motto for beekeeping DIY could be something like:

Measure twice, cut once, swear often 6

However, having identified a problem, there’s almost as much enjoyment to be gained from thinking it through to a workable solution than there is from the actual woodwork.

But Think lots, measure twice, cut once etc. doesn’t have quite the same flow.

And, as we’ll see below, it doesn’t have to be woodwork.

So I can happily fill a few hours on a dark November evening thinking about improvements to a hive stand that could cope with 1500 mm of rain a year and very uneven ground 7, or how to best construct the removable slides for a Morris board.

And by best here, I mean for a lot less than the £30 charged for the commercial ones 8.

Morris board … that’s £8.25 please

Part of the thinking involves how to tackle the project with the limited range of tools I have. I don’t have the space or the skill 9 to own a bandsaw, or a thicknesser 10, or a router.

Almost everything I build uses a combination of Gorilla glue, Correx, hand tools, blood 11, wood offcuts and some really rich Anglo-Saxon phrases.

My DIY skills are legendary, and not in a good way, but the great thing is that the bees could not care less

Fat dummies

Most of the various things I build develop from ideas that occur during the ‘active’ beekeeping season.

If it’s needed urgently I’ll cobble something crudely together and use it there and then. However, it’s unlikely to have received much thought (or care in construction) and so I’m more than likely to ponder how it could be improved once I have a bit more time.

I learnt the basics of queen rearing from the late Terry Clare at a BBKA Annual Convention and couldn’t wait to have a go myself.

Fat dummies – mark 1

I used the Ben Harden queenright queen rearing approach. This needs an upper brood box with most of the space ‘dummied down’ to concentrate the bees on the grafted larvae. For this you need a couple of ‘fat dummies’ 12. I built my first fat dummies one afternoon using gaffer tape and Correx (see above) and later that April reared my first queens.

But that winter I had time to do a bit more research. Dave Cushman’s website described fat dummies with integral feeders.

Clever.

These would clearly be an improvement – unless there’s a strong nectar flow you often have to feed the colony – so I built some. 

Fat dummy with integral feeder

Fat dummy mark 2 … with integral feeder and insulation

Mine are still in use … and not just for queen rearing. They are packed with polystyrene insulation … an embellishment I thought up 13. I can use them to reduce ’empty’ space in a brood box occupied by an undersized colony. In fact, with two of them, I can overwinter a four-frame nuc over a strong colony to provide warmth from below.

Problem solving

As I said earlier, the problem solving is part of the fun. 

I use a lot of Correx. That’s the fluted polypropylene board that is used for political posters and For Sale signs.

Sourcing it is often not a problem if you’re prepared to do some homework.

It’s lightweight, strong, available in a range of cheery colours … but most importantly it is used for political posters and For Sale signs.

So, it’s often free.

And that’s a word all beekeepers like 😉

Wait for a general election and seek out a candidate who has suffered an ignominious and humiliating defeat. Ideally one in which they have both lost their deposit and and any remnants of support from the political party they were standing for … and ask politely.

And For Sale signs are even more easily obtained. Always ask … and remember that it’s bad form to remove them if the house has yet to be sold.

But there’s a problem with Correx. You cannot glue it with any normal glues. It’s got some sort of surface coating that prevents glue from adhering properly. 

Believe me, I’ve tried.

There are special glues, but at special prices 🙁

Roofs

I wanted to build some hive roofs from Correx but had to solve how to fold it ‘across’ the longitudinal flutes, and then how to stick it together in a way that would be weatherproof.

Pizza cutter

Pizza cutter … take care scoring the Correx

The folding bit was easy … it turns out that people who keep guinea pigs use this stuff to make the cages and runs for their cavies. And after an hour or two reading about someone else’s (weird) obsession I discovered that a pizza cutter was ideal for scoring Correx prior to folding it.

The glue I worked out for myself. I built a couple of dummy roofs and held the folded corners together with zip ties or regular gaffer tape, zip ties and regular gaffer tape, or some (claimed) waterproof tape.

Of these, the waterproof tape – specifically Unibond Extra Strong Power tape – worked really well. 

Sticky stuff ...

Sticky stuff …

And remains the only one I’ve found to work.

You need to lightly sand the surface of the Correx and ideally degrease it with some solvent. I still have roofs built 8 years ago with the original tape holding them together. They cost me £1.50 each to build as I had to buy 14 the Correx as the only For Sale signs I had were too small.

Here’s one I made earlier

Most of the things I’ve made have been through one or two iterations of ‘improvement’ before I’ve ended up with something I’m satisfied with.

The Kewl floors I almost exclusively use these days were an improvement of the original design I built, but have also had a couple of additional modifications

My honey warming cabinet – one of the first things I ever built – was modified after a few years by the addition of a fan to better circulate the warmed air. This significantly improved it.

The things I’ve discussed above are all good examples of why it’s worth spending some time in the winter doing some creative thinking and DIY 15 :

  • commercial Morris boards are expensive and (I think) have entrances that are too large
  • I’m not aware of any commercially available fat dummies … please correct me if I’m wrong
  • no one sells hive roofs (or super carrying trays) for £1.50
  • my floors are ideal for the beekeeping I do and significantly less expensive than anything similar available commercially
  • my honey warming cabinet is used to warm supers before extraction, to melt set honey and – because the temperature control and heat distribution is good enough – has even been used as a queen cell incubator

Electrickery

This winter I have three projects to entertain me.

The first project is the second iteration of my DIY portable queen cell incubator. The first of these was cobbled together earlier this year. Although it worked – more or less – it was far from satisfactory.

Mark 2 is currently being stress tested.

It is being tested.

I am getting stressed.

Queen cell incubator – mark 2 … a work in progress

I’ve managed to achieve really good temperature control. However, I’m currently struggling with uneven temperatures at different areas within the box. They barely fluctuate, but they’re not the same.

Great temperature control at a range of (different) temperatures

Grrrr.

I’m pretty sure this is solvable 16 and that it will be possible to build something better than is available commercially for about 10-15% of the price 17.

But, almost more important than that, it will be a problem I’ve solved 18 that suits me, my bees and my beekeeping … which will be very satisfying.

The second project is a set of hive scales. Lots of others have tackled this problem and there are some really clever and complicated solutions out there.

The plan is for mine to be the exact opposite.

Simple, and not very clever at all.

Testing is ongoing 😉

Software, not hardware

And the final project is software, not hardware.

All my honey jars have unique batch numbers. These allow the individual apiary (and bucket) to be identified. The batch number is generated by some PHP or perl scripts and used to print a QR code onto a Dymo label affixed to the back of the jar.

QR code containing a batch number

But that monochrome pointillist pattern contains a hidden web address as well. The purchaser will be able to point a mobile phone at the code and get more information about the honey 19

Having sold honey ‘from the door’ for years I’m unsurprised when buyers want to know more about local bees and the available forage … and with these labels they can (and do).

I’ve written the scripts to handle label creation and logging/redirecting ‘views’. I now have to write the programs that create the customised web pages with the local information lifted from the backend database.

And, with only ~165 days until I next expect to open a hive, I think I’m going to have my work cut out to complete any of these projects.