Tag Archives: queen mating

Apis mellifera aquaticus

Early June 2017 ...

Early June 2017 …

June in Fife was the wettest year on record. It started in a blaze of glory but very quickly turned exceedingly damp. The photo above was taken on the 7th of June. One of my apiaries is in the trees at the back of the picture. Six queens emerged on the 2nd or 3rd of June to be faced with a week-long deluge. The picture was taken on the first dry morning … by the afternoon it was raining again, so delaying their ability to get out and mate (hence prompting the recent post).

And so it continued …

Early July 2017 ...

Early July 2017 …

Here’s the same view on the 1st of July. Almost unchanged … ankle deep water en route to the apiary, the burn in flood and some splits and nucs now being fed fondant to prevent them starving.

A beautiful morning though 😉

Retrospective weather reports

Of course, you shouldn’t really worry about weather that’s been and gone, though comparisons year on year can be interesting. At the very least, knowing that the June monthly rainfall in Eastern Scotland was 223% of the 1961-99 average, I’ll have an excuse why queens took so long to mate and why the June gap was more pronounced than usual. Global warming means summers are getting wetter anyway, but even if you make the comparison with the more recent 1981-2010 average we still got 206% of the June monthly total.

The Met Office publishes retrospective summaries nationally and by region. These include time series graphs of rainfall and temperature since 1910 showing how the climate is getting warmer and wetter. If you prefer, you can also view the data projected on a map, showing the marked discrepancies between the regions.

June 2017 rainfall anomaly from 1981-2010

June 2017 rainfall anomaly cf. 1981-2010 …

Parts of the Midlands and Lewis and Harris were drier than the June long-term average, but Northern England and Central, Southern and Eastern Scotland were very much wetter.

It would be interesting to compare the year-by-year climate changes with the annual cycle of forage plants used by bees. Natural forage, rather than OSR where there is strain variation of flowering time, would be the things to record. As I write this (first week of July) the lime is flowering well and the bees are hammering it. The rosebay willow herb has just started.

Rosebay willow herb

Rosebay willow herb

Prospective weather forecasts

Bees are influenced by the weather and so is beekeeping. If the forecast is for lousy weather for a fortnight it might be a good idea to postpone queen rearing and to check colonies have sufficient stores. If rain is forecast all day Saturday then inspections might have to be postponed until Sunday.

If you have a bee shed you can inspect when it’s raining. The bees tolerate the hive being opened much better than if it were out in the open. Obviously, all the bees will be in residence, but their temper is usually better. They exit the shed through the window vents and rapidly re-enter the hive through the entrance.

I don’t think there’s much to choose between the various online weather forecast sites in terms of accuracy, particularly for predictions over 3+ days. They’re all as good or as bad as each other. I cautiously use the BBC site, largely because they have an easy-to-read app for my phone.

Do I need an umbrella?

For shorter-term predictions (hours rather than days) I’ve been using Dark Sky. This can usefully – and reasonably accurately – predict that it will start raining in 30 minutes and continue for an hour, after which it will be dry until 6pm.

The forecast in your area might be different 😉

Dark Sky via web browser

Dark Sky via web browser

There’s a well designed app for iOS and Android as well that has neat graphics showing just how wet you’re likely to get, how long the rain will last and which direction the clouds will come from.

Dark Sky on iOS

Dark Sky on iOS

It’s far from perfect, but it’s reasonably good. It might make the difference between getting to the apiary as the rain starts as opposed to having a nice cuppa and then setting off in an hour or two.

Rain stopped play

I’ve posted recently on delays to queen mating caused by the poor weather in June. I’ve now completed inspections of all the splits. Despite both keeping calm and having patience I was disappointed to discover that the last two checked had developed laying workers. Clearly the queen was either lost on her mating flight or – more likely (see the pictures above) – drowned.

I’ve previously posted how I deal with laying workers – I shake the colony out and allow those that can fly to return to a new hive on the original site containing a single frame of eggs and open brood. If they start to draw queen cells in 2-3 days I reckon the colony is saveable and either let them get on with it, or otherwise somehow make them queenright.

One of the laying worker colonies behaved in a textbook manner. A couple of days after shaking them out there were queen cells present. I knocked these back and united the with a spare nuc colony containing a laying queen.

Lime can yield well in July

Lime can yield well in July

The second colony behaved very strangely. I didn’t manage to inspect them until a week after shaking them out. There were no queen cells. Nor was there any evidence of laying worker activity in the frames of drawn comb I’d provided them with. Instead, they’d filled the brood box with nectar from the nearby lime trees. Weird. I united them with a queenright colony and I’ll check how they progress over the next week or two.

Apis mellifera aquaticus

My colonies are usually headed by dark local mongrel queens. My queen rearing records show that some are descended from native black bees (Apis mellifera mellifera) from islands off the West coast of Scotland, albeit several generations ago. These bees are renowned for their hardiness, ability to forage in poor weather and general suitability to the climate of Scotland.

Nevertheless, without further natural selection and evolution they will have still needed water wings, a snorkel and flippers to get mated last month 😉

Not waving but drowning


Colophon

Carl Linnaeus

Carl Linnaeus

The taxonomic scheme ‘developed’ by Carl Linnaeus (1707 – 1778) is a rank-based classification approach actually dates back to Plato. In it, organisms are divided into kingdoms (Animals), classes (Insecta), order (Hymenoptera), family (Hymenoptera), genera (Apis) and species (mellifera).

The subspecies is indicated by a further name appended to the end of the species name e.g. Apis mellifera capensis (Cape Honey bees), Apis mellifera mellifera (Black bees)

Apis mellifera aquaticus doesn’t really exist, but might evolve if it remains this wet 😉

Keep Calm and Have Patience

Around this time of the season§ the discussion forums are awash with questions about virgin queens failing to emerge, or get out to mate, or return from mating flights, or start laying eggs, or any of a myriad of other possible things that can go wrong between a sealed queen cell and a nicely laying queen.

Or where to buy a new queen for a terminally queenless colony.

Followed a week later by a question about what to do with a recently purchased, and soon to be delivered, queen that is now surplus to requirement as – miraculously – a beautiful mated and laying queen is now obviously present and busy in the hive 😉

There she is ...

There she is …

Practice makes perfect

There’s good evidence from recent genetic studies that the honey bee (Apis mellifera) evolved about 300,000 years ago from Asian cavity-nesting bees. This was determined by analysing 140 bees sampled from around the world. The genetic differences between them (over 8.3 million in total) were identified and then – knowing the rate at which differences arise – it was possible to extrapolate backwards to define the approximate time the first honey bee (Eve?) evolved.

Early human ...

Early human …

For comparison, humans – modern man, Homo sapiens – have been around for about the same length of time.

Coincidence? Probably.

300,000 years is a long time when compared to the lifespan of a human, or a bee. However, it’s a mere blink of an eye in evolutionary terms. It also means that bees, and humans, are relatively recent arrivals when compared with fig wasps (34 million years), coelacanths (65 million years) or elephant sharks (420 million years).

Nevertheless, although bees might be evolutionary newcomers, they have been getting it right for about 300,000 years. Which means they’ve been superceding and swarming ever since modern man was recognisably modern man.

Which means they’re reasonably good at it … ‘it’ being reproduction, and more specifically getting the queen mated.

If they weren’t any good at it they’d be long gone by now.

Going by the book

The development of the queen takes 16 days from egg to eclosed (emerged) virgin. Three days as an egg, a further 6 days as a larva at which point the cell is sealed. Pupation then lasts for a further 7 days. The recently emerged queen needs to become sexually mature. This process takes a further 5 to 6 days before she goes on one (or more) matings flight(s). After mating she then returns to the hive and, after a further 2-3 days, starts laying eggs.

So, under optimal conditions, it takes a minimum of ~23-25 days to go from egg to mated and laying queen i.e. about three and a half weeks.

If a queen is removed from the hive, deliberately or by accident, there could be a new, mated laying queen present about three and a half weeks later.

There she goes ...

There she goes …

In fact, it’s possible the new queen could be mated and laying in less time than this. The queenless colony might start to rear young larvae as queens, so ‘saving’ a few days. It’s generally reckoned that larvae up to about three days old can be selected by the colony and reared as queens, though younger is better as they are better fed for longer.

Bees can’t read

However, things rarely go by the book. Although development time is pretty-much fixed at 16 days from newly laid egg to emerged virgin, there’s plenty of opportunity to lengthen (and rarely shorten, as outlined above) the time taken before the queen starts laying.

Chief amongst these is getting conditions suitable for queen mating. Typically this needs to be warm and settled weather. High teens centigrade, sunny and light winds between late morning and mid/late afternoon. If this doesn’t occur the queen stays put in the hive.

There’s also a time window within which successful mating must occur. This starts when the queen reaches sexual maturity (~5-6 days after emergence) and ends three to four weeks later (~26-33 days after emergence). A few days of poor weather during this period may well delay mating. Three weeks of lousy weather can be catastrophic – she may well turn out to be poorly mated or, if she doesn’t mate, a drone laying queen.

Depending on where you live, it’s rare to get three continuous weeks of terrible weather during the predominant swarming period (late April to late-July perhaps). However, it’s not uncommon to get a week or so of ‘unseasonable’ weather. In 2017, June was the wettest on record in Fife – precisely when I expected my virgins to be going out to mate.

Keep calm and Have Patience

Keep Calm ...

Keep Calm …

All this means is that you need patience when waiting for newly mated and laying queens in your colonies. In my experience it usually takes longer than it could, and it’s almost always longer than I want.

You should be able to calculate when the virgin queen will emerge to within a day or so of the colony becoming queenless. Better still, judge the development of queen cells and add 7 days to the date on which the cell become capped.

I usually check to make sure there’s a virgin queen in the hive. They’re small, skittish and often tricky to spot. They don’t get the same sort of attention from the workers as a mated queen gets. They can fly, and do if you disturb them too much. It’s reassuring to know there’s an emerged virgin present, but don’t keep checking. I try and check on the day after emergence. If you check too late and the weather is good there’s a chance you’ll interrupt her returning from a mating flight, with possibly disastrous consequences.

Then wait.

Observe the bees at the hive entrance and look for them returning laden with pollen. If you must inspect the colony (why?) do so early or late in the day. Don’t bother looking for the queen. Instead look for polished cells in the middle of the central frames … and eggs of course.

Dates from my diary

In June 2017 new queens should have emerged from my vertical splits on or shortly after the 2nd. Under optimal conditions I could hope these virgins would be mated and laying by the 12th at the latest. The splits were all set up on the same day. I didn’t check every hive for the presence of a virgin, and didn’t find one in every hive I checked, but I did find the expected vacated queen cell.

It then started raining. Lots. One of my apiaries flooded.

I had a quick look on the 12th in a couple of hives – no eggs. I checked again around the 22nd. The 18th had near-perfect weather for queen mating – sunny, 20+°C, light winds – and found mated, laying queens in a couple of boxes. But not in all of them. It wasn’t until the 27th that I found evidence that the latest queen was mated and laying well. She’d obviously started a day or so earlier as there were already eggs across two full frames.

All but two splits appears to have been successful – defined by presence of a laying queen. None were mated and laying anywhere near the minimal possible 9-10 days after emergence. One developed laying workers and I suspect the queen got lost on a mating flight quite early on. The second looks promising and I’ve not yet given up hope on this remaining colony.

I don’t keep records of the time it takes for new queens to get mated. However, from emergence (the date of which I usually do know) I wouldn’t be surprised if the average was a little over 21 days.

The shortest mating times I’ve seen occur in ideal weather conditions when using mini-nucs for queen rearing – under these circumstances ~11-12 days is not uncommon. But that’s a post for the future …

Keep Calm and Carry On


§ This was written in mid/late June in Fife, Scotland … about two weeks after the peak of the swarm season.

Wallberg  et al., A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics, 2014; DOI: 10.1038/NG.3077

‡ Huber et al., New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature, 2017; DOI:10.1038/nature22336

∞ OK … formally, I know that supercedure might not be considered as ‘reproduction’.

∑ Though how it can be considered unseasonable when it’s not uncommon is a mystery 😉

∏ Of course, the true measure of success when rearing new queens is much more rigorous than this. They need to primarily lay fertilised worker eggs, have a tight laying pattern, mother well-behaved, calm bees that work well in the local environment, do not have a tendency to swarm, are frugal with winter stores and build up well in early Spring. And the rest …

Colophon

Keep Calm and Carry On was the text on a motivational poster produced in 1939 in the run up to World War II. Millions of copies were printed but few were ever displayed … in fact, many were pulped in 1940 to help overcome a serious paper shortage.

There’s an excellent account of the history and (many) compromises made during the design and preparation of the poster (almost 78 years to the day I’m writing this) on the Government history blog – highly recommended.

The poster was largely forgotten until 2000 when it was re-discovered. The rest, as they say, is history … it’s now ubiquitous, corrupted in a load of different ways and used on all sorts of novelty and decorative products.

You can even design your own …