Tag Archives: swarms

Bait hive location

We’re fast approaching the time of the season when colonies will attempt (and manage) to swarm. Swarming is the way bees increase their colony numbers.

Inevitably, because it means the loss of many of the foragers – the honey-gathering workers – beekeepers try and prevent or control swarming. Prevention is better than control, but it can be difficult or impossible to achieve.

Inevitably, a very large number of swarms are therefore lost.

The swarming process has been well-studied by eminent scientists like Martin Lindauer in the early 50’s and Tom Seeley more recently.

Swarming in a nutshell

The colony ‘decides’ to swarm. They rear one or more new queens in queen cells. On the 9th day after the egg is laid the cells are capped. Then or shortly afterwards the colony can be expected to swarm, with the original queen and up to half of the workers leaving with her. Swarming tends to happen on a warm, calm, sunny day (but not always). Casts may follow.

The swarm leaves the hive and settles nearby, in a tree or on a fencepost. Usually this initial ‘staging post’ is a short distance (perhaps 5-20 metres) from the hive. Scout bees fly from this swarm, surveying suitable locations in the area to set up a more permanent residence.

Swarm of bees

Swarm of bees

Actually, the scouts have been hard at work already. Once the swarm issues from the hive they set about persuading all the other scouts that they’ve found the ideal location. This ‘persuasion’ is the topic of the excellent book Honeybee Democracy by Tom Seeley.

Once a consensus is reached (which might take hours or a few days) the swarm leaves its temporary staging post and flies directly to the final location … a hollow tree, the church tower or above your neighbours soffit. There they set up home.

Most swarms do not survive. They get caught in a storm before relocating, they succumb to disease or they eventually starve to death. Since most strong colonies can – unchecked – be expected to swarm every year, the fact we’re not inundated with colonies indicates that most die.

One beekeepers loss can be another beekeepers gain.

Swarms can also be an annoyance to non-beekeepers. ‘Normal’ people. This always surprises me because a swarm is a stunning site and usually totally unthreatening and unaggressive 1.

Nevertheless, they can be an irritation, both when swarming or if they become established in the church tower or a hollow tree. And, without Varroa treatment they will act as a source of disease for other colonies in the locality through robbing and drifting 2.

So, rather than just let swarms disappear over the hedge or horizon, far better to capture them, put them in a hive and manage them properly 3.

There are essentially two ways to achieve this. Get them when they’re at their temporary staging post, drop them into a box and subsequently hive them. I’ve discussed this process before.

Captured swarm in 8 frame poly nuc

Captured swarm in 8 frame poly nuc …

Alternatively, set up one or more bait hives and entice a swarm to choose this location rather than the church tower or a hollow tree. Again, I’ve discussed how to set up a bait hives several times before.

Bait hives in a nutshell

Honeybee Democracy contains the definitive guide to the desirable characteristics of a bait hive. Conveniently it’s a dark box the size of a National brood box (~40 litres) with a small entrance (~12.5cm2) at the bottom. It helps a lot if it also smells of bees. This can easily be achieved by placing an old black brood frame up against one wall. Fill most or all of the rest of the box with foundationless frames 4 and place it in a suitable location.

Bait hive ...

Bait hive …

Which is – finally – what this post is all about.

Location, location, location

Seeley studied the desirable characteristics of both the bait hive and the location in which it is sited. By location I really mean height from the ground and orientation. However, he and others have also investigated how far from the original temporary staging post the swarm are prepared to fly to occupy a ‘des res’.

So, once you’ve prepared your bait hive(s), the three features of the location you need to think about are their a) orientation, b) height above ground, and c) distance from your bees (or other apiaries 5).

The first two are straightforward as Seeley describes in Honeybee Democracy. In the mid-70’s he conducted a series of experiments which showed that bees prefer bait hives that a) faced South and b) are located higher (5m from the ground) rather than lower (~1m) 6.

Most of the studies in Honeybee Democracy use artificially prepared swarms. Seeley would place these on a post and then observe where they relocated to … essentially he was circumventing the natural process of swarming by ‘starting’ them from the staging post. Many were conducted on an island where there were limited options to relocate to … and at limited distances.

These studies weren’t ideal to determine how far a swarm will relocate from its temporary staging post.

This is important in deciding whether to place bait hives in, near or distant from established hives.

Go forth and multiply, or vice versa

It might be logical to expect swarms to choose distant final destinations rather than nearby ones. For example, this might ensure less competition for forage. That would suggest that bait hives should be situated a long way from your own – or other – apiaries.

However, it turns out that when bees multiply they usually choose not to go forth very far. Although there is some contradictory evidence, it appears as though swarms prefer to relocate to nearby sites, rather than distant ones.

  1. Seeley and Morse (1977) demonstrated that swarms chose a nearby (~20m) site rather than a distant site (~400m) 80% of the time 7.
  2. Jaycox and Parise (1981) showed that swarms always chose sites less than 200m from the artificial swarms prepared for their study 8.
  3. Schmidt (1995) demonstrated that artificial swarms chose to relocate from as little as 0.5m to at least 1 km (average ~400m, i.e. much further away than the other studies) 9.

Why they prefer to set up home near to the original colony is unclear. At least one paper speculates it leaves the option to rob a genetically-related (and possibly less defensive) colony more easily.

Pragmatism and practical beekeeping

I set up bait hives every year. I’ve never failed to capture swarms. I’ve also – inadvertently – had swarms occupy stacks of stored brood boxes or supers. The entrances have faced almost every direction, with South East and South probably being the most often occupied.

However, this is a biased survey … I usually use the same site that worked in previous years.

Under offer ...

Under offer …

Although I’ve located bait hives high up on the top of greenhouses or sheds, the majority are on normal hive stands. This is pragmatism, not because they are more attractive to the bees at knee height 10.

I simply don’t want to climb a ladder to retrieve them 😉

Finally, I put them where I can see them and check them. I locate one in the corner of each apiary, as far from my other hives as possible, but probably never more than 10m away.

Pleasure and practical beekeeping

I also always have a bait hive in the garden where I can observe it on a daily basis. It’s great to see the first scouts appear, to watch their numbers increase day upon day, to keep an eye on the weather for a hot calm day … and to try and predict when the swarm will arrive.

Scout bees are not aggressive. They fly in a characteristic manner, checking the bait hive and the immediate vicinity from all directions.

If the numbers of scouts builds up to dozens or hundreds and they all disappear … either they’ve chosen somewhere else or the swam has been captured.

Or they’re guiding the swarm to your bait hive at that very moment.

Wait a few minutes. A swarm arriving is one of the really great sights in beekeeping 🙂


 

2017 in retrospect

The end of the year is a good time to look back at the highs and lows of the season. What worked … what didn’t work … what on earth happened to our weather in June?

Early June 2017 ...

Early June 2017 …

June is an important month here in Fife. Early season colony buildup should be pretty much complete, most colonies will have had some sort of swarm control measures in late May, virgin queens may well be present in many hives, the OSR is over and colonies need to consolidate for the main summer flows.

But instead it just rained.

Rainfall in Fife was 225% the 40 year average, access to apiaries was problematic due to flooding and queens could only get out to mate if they were wearing ‘water wings‘.

Big mistake

Many colonies needed to be, or should have been fed, during June. Mine had reasonable levels of stores as I’d not taken much early season honey. I therefore chose not to feed them. In retrospect I think this was a big mistake.

Although not monitored carefully, I suspect brood rearing slowed, so reducing the colony size to effectively exploit the July/August flows. It was my worst summer honey crop in years.

Lesson one … If this happens next season I’ll continuously feed thin syrup to keep the queen laying strongly.

Doing the splits

Notwithstanding the incessant rain, swarm control – and the inevitable associated queen mating – went pretty well. I generally use splits of one form or another and most queens got out to mate, albeit a little slower than I’d have liked. If swarm control is needed for colonies in the bee shed we can’t do vertical splits (because of the way entrances are organised) and instead just take a nucleus colony away and let them rear a new queen.

Only ‘pretty well’ though because I suspect I lost a cast from a vertical split that went calamitously wrong. I’d left the queenless half far too strong and inadvertently also left multiple developing queen cells.

D’oh!

This wasn’t going to end well  🙁

I did manage to capture and hive another cast from the same colony, but the first virgin queen and well over half the workers were long gone.

So, lesson two (which I’ve been taught many times before 😥 ) is to be decisive when there are multiple queen cells in a split. Either knock them back appropriately (which I’ll explain next year) or split the box up into multiple nucs. Don’t dither. Don’t prevaricate and don’t – as I think I did this year – simply forget to check.

All the gear, some idea

I blatantly poached how to build foundationless frames with bamboo skewers from the internet. I claim zero originality here. It isn’t my idea. However, I’m pleased to say it was a great success. Simple wooden starter strips were also a roaring success. It’s very satisfying when you realise you don’t need to spend £1 per frame on foundation.

Nearly completed ...

Nearly completed …

I’ve used quite a few Abelo poly hives this season. They’re a strident colour – blue and yellow – but reasonably well made. Colonies checked this winter are doing well in them, with bees right up to the side walls on sub-zero days. This suggests to me that they are well insulated.

An Abelo/Swienty hybrid hive ...

An Abelo/Swienty hybrid hive …

There are some aspects of these hives I have yet to be fully convinced by; upper entrances, the crownboard, high condensation levels and a small Varroa tray. I’ll review them more fully when I’ve been using them for at least a full year.

Old invasives …

The bête noire of most beekeepers, the Varroa mite, has featured heavily throughout the year. In print, though thankfully not in my colonies. I’ve tried to emphasise the need to treat appropriately, using the right miticide at the right time. Since most approved (and even some unapproved 😉 ) miticides are all pretty effective, the timing of treatment is probably the most important point.

2016 temperature data and OA treatment ...

2016 temperature data and OA treatment …

In three recent posts I presented the importance of midwinter treatment, how to prepare the oxalic acid-containing miticide and how to administer it. These should probably be read in conjunction with an earlier article on when to treat, which I’ll come back to in a minute. Finally, as far as Varroa is concerned, I discussed potential ways to optimise the timing of the winter treatment by watching the weather. I suspect that most beekeepers treat too late in the winter.

If you have yet to treat this winter … get a move on!

… and new ones

The new invasive that got some coverage was, inevitably, the Asian hornet. Having first arrived in 2016 I think we’ll be subjected to annual incursions until it gets established here. Constant vigilance is going to be needed to help postpone what might be inevitable. Just because it is inevitable doesn’t mean we shouldn’t try and delay it’s permanent arrival.

Devon beekeepers got some first-hand experience of how vigilant you need to be to both spot and photograph Asian hornets in September. Martin Hocking has written about his experience in the Devon Beekeeper (pp172 and also in November’s Bee Craft)  which should be required reading for beekeepers, with a follow up article about his experience in December (see pp196). There’s an open meeting on the 20th of January at Harberton Parish Hall, TQ9 7SD where the threat posed by the Asian hornet – and how to mitigate it – will be discussed.

Although rarely mentioned this year, Small Hive Beetle now appears to be established in the Calabria region of Southern Italy. Data updated in late September and November indicates that positive wild colonies and sentinel nucleus colonies are still being found, indicating that attempts to eradicate the beetle have failed. Infested colony numbers are perhaps a bit lower than previous years, but since there’s no readily-available data on the level of surveillance, it’s not clear whether this shows that control is having an effect, or if people are just not looking as hard.

www.theapiarist.org

Posts have been made every Friday of the year, with a few additional ones when something important happened (Asian hornets or I was ‘advertising’ a Convention I was speaking at … OK, my talk wasn’t important, but the Welsh Beekeepers Convention was 😉 ).

Regular as clockwork ...

Regular as clockwork …

The Friday posts are intentional. It’s when most of us have time to read stuff. The regularity was not and, frankly, it’s a bit of a surprise I’ve achieved it. However, there it is. No promises it’ll continue like that. You can register to receive email notification of new posts in the right hand panel.

Visitor numbers to the site are markedly increased from last year. Page views per visit are down fractionally, but not significantly. It’s clear that more are finding the site as it becomes better indexed by the search engines, and as pages are referenced by other sites.

24 months on www.theapiarist.org ...

24 months on www.theapiarist.org …

My attempts at generating a presence on Facebook was an abject failure. I simply don’t have time to do anything other than automagically post updates from here on Facebook (as I do on Twitter, which I’m a bit more familiar and competent with … follow me on @The_Apiarist). Apologies if you tried to ‘Friend’ me (or whatever) on Facebook. I’ve cancelled all the email updates as I simply couldn’t keep up. Or, when I tried, I didn’t know how to! I belong to the pre-FB generation, or the one before that.

Beekeeping is international, with different problems – but many shared ones – globally. I’m grateful to the visitors from 161 different countries and the European Union 🙂 Less than 50% of the readers are from the UK, despite the UK-centric bias I inevitably exhibit (°C, colour, no mention of queen castles or slatted racks, precious little discussion of Langstroth hives etc.). Southern hemisphere beekeepers don’t even do things at the same time of the year, so many of the posts aren’t even topical for readers in Australia, New Zealand and South America. Whatever, I’m grateful people took the time to visit and read stuff.

And the winner is …

I don’t publish visitor numbers, but I do comment on the popularity of particular pages. For several years a post on my honey warming cabinet has been the most popular. It was originally posted ‘way back’ in 2014. Frankly, it was useful, but not particularly challenging or exciting.

But it’s all change this year. Aside from the homepage, the archive and blog pages, all of which people arrive at to to get the most recent posts, the honey warming cabinet post was a distant fourth in the 2017 rankings.

Above it were posts on vertical splits and making increase, feeding fondant and – particularly pleasingly and top this year – when to treat colonies with miticides against Varroa. I say particularly pleasingly as the When to treat? post is a serious article on an important subject, underpinned by scientific arguments. The timing of the late summer treatment is probably one of the most important events in influencing the health and overwintering success of the colony. This post was almost twice as popular as any other post this year which – because it originally appeared in early 2016 – suggests it is finally being widely cited and accessed by beekeepers.

When to treat?

When to treat? Finally getting read when it should be.

And what does the future offer?

Frankly, as I write this in mid-December with a streaming cold, a box of tissues and slathered in Vicks VapoRub (really, it’s not a pretty sight) I don’t know. I have two priorities at the moment; getting the new bee shed properly setup and (with my researcher hat and lab coat on)  starting studies of Chronic Bee Paralysis Virus. Both will get coverage here.

Bee Shed 2 ... the windows still need some work.

Bee Shed 2 … the windows still need some work …

In terms of the website I’m acutely aware there’s no proper indexing or rational list of articles on particular subjects, perhaps other than Varroa. I hope to bring some order to the chaos, allowing me to not repeat myself, to develop some themes more fully and to not repeat myself 😉 . I also know I have a load of unwritten stuff on queen rearing.

Winter time is also DIY time … dabbling with wood, perspex, Correx and Elastoplasts. Something will surely result from this, in addition to the blood loss and bad language.

If there are things you’d particularly like to read drop me a note. I’m interested in the science underlying beekeeping and have little patience with some of the dogma and That’s the way we’ve always done it stories. I’ve already written about the importance of training and the responsibilities of beekeepers. I’ve got some more on these areas planned as I think they’re too often ignored by beekeepers in the UK.

With Best Wishes for 2018. May your colonies be docile, your supers unliftable, your queens well-mated and your swarms (again) in my bait hives 😉

Happy New Year


 

 

That’s all folks

That's all Folks

That’s all Folks

It’s late August and the end of my least successful beekeeping year ever. That sounds very negative, so perhaps it should be qualified. It’s the end of my least successful beekeeping year in terms of honey production.

However, in terms of the satisfaction I’ve got from my beekeeping, it’s been a pretty good year. Let’s examine these two things separately, dealing with the bad news first.

Tell ’em about the honey, mummy

My production colonies only generated about 25lb each of Spring honey. Some of this was clearly oil seed rape (OSR) as there were fields just about in range, but much of it was essentially mixed hedgerow and tree nectar, and none the worse for that. This was all extracted in late May or early June and is now stored, set, in buckets. Later in the year, once the temperature drops, I’ll prepare soft set honey for sale or distribution to friends and family.

25lb is firmly at the bottom end of the averages over the last few years though – in fairness – It’s only my second Fife Spring, so I don’t have much recently to compare it with. Colonies were doing well when I first inspected them, but in some cases that wasn’t until early May. The active beekeeping season is only 4-5 months long here (latitude 56.3° N).

June started well, with clear weather and high temperatures.

And then it started to rain. And continued for almost the entire month.

Lime can yield well in July

Lime can yield well in July …

None of my full-size colonies needed feeding, but most reduced their brood rearing. July nectar flows were poor. The lime yielded a small amount of very high quality honey, but for whatever reason – poor weather, colonies not strong enough, patchy flows – pretty-much nothing else. The summer honey was extracted in mid-August and is already disappearing fast.

I didn’t take any colonies to the heather as I was abroad for a chunk of July when I’d need to be preparing and shifting them to the moors. And, in all likelihood, they probably weren’t strong enough anyway.

And that was it … like last year, all over much sooner than expected.

There’s some balsam in central Fife along the River Eden that might give some late-season nectar and there’s ivy (but that is some way off flowering yet) but I usually let the bees keep anything they collect once the summer honey is extracted.

Flowering ivy

Flowering ivy

And the good news is

Beekeeping isn’t all about honey. There’s also tremendous satisfaction to be gained from working with the colonies, improving your stock and feeling that – although perhaps not in complete control – you’ve got a pretty good grasp of what’s happening and how things are going.

In this regard, 2017 was a success.

I know I lost one swarm (actually a cast from the queenless half of a split). I got a call to say that the apiary was thick with bees but they’d long gone by the time I extricated myself from meetings and got home. In itself this wasn’t a success. However, I learned my lesson and managed to hive a second cast that issued from the same colony a day or two later. I also had success with my bait hives.

With a couple of exceptions my vertical splits went well, with the resultant queens both laying well and heading well-behaved colonies. The couple that didn’t work developed into (drone) laying workers and were dealt with successfully by uniting.

In retrospect, considering the weather in early/mid-June I’m astounded any queens managed to get out and mate. By late July colonies headed by these newly mated queens were developing well, with frame after frame of brood exhibiting a pretty respectable laying pattern.

That'll do nicely

That’ll do nicely …

Throughout the season I had a pretty good idea what was happening in most of my colonies. There were no big surprises … “Oops, a virgin queen, where did she come from?”, or “Grrrr … no queen, no eggs and no swarm cells, I’m stumped”.

Colonies behaved in a thoroughly predictable manner. Strong ones were caught before they swarmed, split and were merged back to a double brood box. Nucs developed pretty well, though they needed close attention and some emergency feeding through June. No drama, no panic.

The end of the summer season, other than the truly woeful honey yield, has left me with a good number of nicely behaved and generally very strong colonies. As always there’s one exception, but I’ll unite that weakling late this week if things haven’t picked up.

All the gear, no some idea

Split board ...

Split board …

Gradually equipment standardisation is starting to pay dividends. I ran out of almost nothing (I certainly didn’t run out of supers 🙁 ) and managed to mix’n’match as needed to leave colonies secure, watertight and with the proper bee space when needed. Homemade split boards ended up being pressed into service as floors and it’s clear I’ll have to make some additional kewl floors this winter.

Bamboo-strengthened foundationless frames were a great success. Furthermore, I prepared a second batch mid-season and never got round to using them, so have plenty to start the season next year. Result! However, it’s sobering to realise that one of the reasons they weren’t used was that the nectar flow simply wasn’t strong enough to get them drawn properly.

Finally, whilst we’re on the subject of equipment, I’ve used about half a dozen Abelo poly hives this year in addition to the usual Swienty boxes with homemade floors and roofs. First impressions of the Abelo boxes are pretty positive and I’ll write something up later in the year on them.

Season’s end … or the start of the new season?

Late summer and autumn is an important time in the beekeeping year. Some even consider it the start of the next season, as success in the subsequent year is very dependent upon the preparation in the preceding autumn.

Feed'n'treat ...

Feed’n’treat …

All my colonies are scarfing down large quantities of fondant at the moment. They’ll all get another few kilograms as the autumn progresses. Unless there’s good reason to, it’s unlikely any colonies will be inspected again until Spring.

Varroa treatment is ongoing and the mite drop from most colonies is reassuringly low. I count the mites from each colony over a two week period. Over the first 5 days, some dropped just single figures …

All colonies are coordinately treated to maximise decimation of the mite population at a time when bees have a tendency to drift more and/or rob adjacent colonies – both being well-documented routes by which Varroa can be transmitted between hives. I’ve also helped a neighbouring beekeeper (with colonies within range of my own apiary) by loaning out my Sublimox so that, together, the mite population at a landscape-scale is reduced.

This is simple common sense. I don’t want my (nearly) mite-free colonies infested from neighbouring apiaries and I also don’t want the colonies I do have with appreciable mite levels (~50+ after 5 days treatment) to infest others.

2018

It’s far too soon for much serious thought about 2018. However, I already know there are going to be some major changes to my beekeeping. The local Council have just announced that they will shortly (Spring next year) build a new road literally through the middle of my bee shed and apiary … finding a new location and getting things rebuilt is my major focus at the moment.

And finally … it’s harvest time and raining again …

Mainly dry ...

Mainly dry …


† Tell ’em about the honey, mummy was a catchphrase from a TV advert for Sugar Puffs breakfast cereal. The advert aired from 1976 to ’85 and featured the Honey Monster and Henry McGee (from the Benny Hill show).

Henry is the one on the right.

They don’t make advertising like that any longer. For obvious reasons.

‡ Scarf is American slang meaning to ‘eat voraciously’. It’s probably a bastardisation of the word scoff. Scarf has other meanings and I strongly suggest you don’t look these up.

Colophon

That's All Folks

That’s All Folks

The phrase That’s all folks dates back to 1930 when it was used on the closing screen of a Warner Bros. Looney Tune cartoon.

Over the years many different characters used this line on both Looney Tunes and Merrie Melodies cartoons. Mel Blanc (1908-’89), the actor who voiced (stuttered) the most famous version … Th-th-th-that’s all folks! has the engraving That’s All Folks on his gravestone.

There’s a 1949 Merrie Melodies cartoon called The Bee-Deviled Bruin with the Three Bears, a colony of bees and a shortage of honey for breakfast. Typical slapstick ensues. It ends with That’s all folks”.

Prime numbers and cast offs

This post was prompted by a recent search used to reach this website. The question posed was can a prime swarm be led by virgin queen if [the] old clipped queen dies trying to lead a swarm?”

Swarming is the natural way that honey bee colonies reproduce. The process is triggered by a number of factors – overcrowding and diminishing levels of queen pheromone being two of the most important.

A small swarm

A small swarm …

Both these are, directly or indirectly, measures of how strong the colony is. If the queen has nowhere to lay because the box is wall-to-wall brood or stuffed with nectar, the colony is effectively overcrowded. In contrast, if the colony has ample space but there are so many bees that the queen pheromone is ‘diluted’, the colony will sense this indirect measure of strength and make swarm preparations.

In addition, as queens age they naturally produce less queen pheromone; colonies headed by older queens are therefore more likely to swarm than those headed by first year queens.

Prime swarms

You’ll see two definitions of prime swarms. Some define it as the swarm headed by the mated, laying queen and others use it to mean the first swarm to issue from a hive.

They’re usually one and the same thing.

Developing queen cells in the hive are capped on the 9th day after the egg they contained was laid. If the weather conditions are suitable – typically early afternoon on a warm, sunny day – the mated queen leaves the hive with up to half the workers.

This swarm – headed by the mated queen and often containing perhaps 20 – 30,000 bees – is the prime swarm. It’s the first to leave the hive … but it might not be the last …

Captured swarm in 8 frame poly nuc

Captured swarm in 8 frame poly nuc …

Casts (or cast swarms)

Seven days after the queen cells were sealed the new, virgin queen emerges (or ecloses). For the continued viability of the original colony this queen needs to be mated and return to the colony. She does this on a warm, sunny day a few days after eclosion.

However, there are often several developing queen cells remaining in a hive after a prime swarm disappears over the fence to the howling wilderness.

This is where things get interesting.

All sorts of things can happen at this point. If the colony is strong enough it will throw off one or more casts. These are small swarms, headed by a virgin queen. Small is a relative term. They’re small in comparison to a prime swarm. Once started a colony can continue to throw off smaller and smaller casts. Some are these small in comparison to a mug of tea.

The continued loss of bees means the colony may effectively ‘swarm-out’, reducing in strength until perhaps only 10% of the original colony remains. If this happens any opportunity of a honey harvest is also lost and there’s a chance the colony will not recover sufficiently in time to overwinter successfully.

To complicate matters further, if multiple queens emerge casts can contain more than one queen. Sometimes you’ll open a hive at the same time as multiple queens are emerging. It can be bedlam trying to catch half-a-dozen virgins scuttling around a busy brood box.

Hiving casts

Large casts – perhaps football-sized – are worth catching and dumping into a nuc. Once the queen gets mated they can develop into a worthwhile colony. Ted Hooper describes ‘rescuing’ smaller casts by uniting them over a queen excluder on top of the supers on a strong hive. The bees unite and the queen is prevented from entering the hive by the excluder. I’ve not had to do this. I’ve lost one or two colonies that swarmed out but missed the ever-diminishing casts altogether.

A cast ...

A cast …

The cast swarm above was collected in a skep and allowed to settle for a few hours. When I lifted the skep from the sheet to dump the bees into a nuc there was a single bee corpse remaining … a dead queen. The cast obviously contained at least two queens. On checking the nuc a week later, after a week of almost continuous rain, I found a single skittish queen running around. Her behaviour suggested she hadn’t yet had an opportunity to get out and mate.

A cast in the skep ...

A cast in the skep …

And the answer is … ?

Consider again the original question … can a prime swarm be led by virgin queen if [the] old clipped queen dies trying to lead a swarm?”. The answer isn’t necessarily straightforward.

I think I’d argue that a swarm led by a virgin queen, despite being the first swarm to leave the hive, is not a prime swarm. It’s viability still depends absolutely on the virgin getting mated.

I would consider it as a cast.

Clipped queen ...

Clipped queen …

Clipped queens have one wing trimmed to restrict their flight. This is a well-established method of swarm control. If the colony swarms the queen drops to the ground and the swarm often clusters with her under the hive. Colonies with clipped queens usually swarm a bit later in the development cycle of the new queen(s) in the colony. However, they are only delayed by a day or two.

I’m therefore puzzled why – as suggested in the question – there was both a clipped queen and an emerged virgin in the colony simultaneously. Or perhaps there wasn’t, but the query was whether a subsequent emerging virgin would head the swarm …

I’m afraid the puzzle will remain. The question came from an internet search … unless the person who posed it reads this and responds all we can do is speculate.


Or perhaps to establish themselves in your neighbours soffits. The same neighbour who has always complained about your bees chasing their dog and stinging their children. Reason enough to try and not lose swarms.

‡ I know this was a cast headed by a virgin queen because it came from a vertical split in which the queenless half was left overly strong. The clipped and mated queen was ‘all present and correct’ in the queenright half of the split – I checked. I’m intending to write a bit more about how to prevent casts in the future … once I’m a little better at it than I’ve been this Spring  😥

Scouting for girls

A swarm of bees is a wonderful sight … if it’s arriving in your bait hive. It’s still dramatic, but perhaps slightly less wonderful, if it’s disappearing over the fence from your apiary 😉

Although some will disagree, I think beekeepers have a responsibility to both control swarming of their own stock, and capture – or attract – swarms lost by others. Although perhaps incomprehensible to us, some don’t share our passion for bees. Many are frightened and a large swarm is an intimidating sight for the melissophobic.

A small swarm ...

A small swarm …

Aside from frightening people, if they move into the church tower or an old hollow tree, they’re likely to develop high levels of Varroa and the pathogenic viruses the mite transmits. As a consequence, they can act as a source of disease to bees in local apiaries, until they’re killed off in the winter. Which they almost certainly will be.

I therefore always put out bait hives in late Spring, well ahead of the expected start of the swarming season (which often coincides with the oil seed rape finishing). I’ve described the basics of bait hives previously – a National-sized, bee-smelling box containing one frame of old, dark comb and half a dozen foundationless frames. I often use stacked supers from the, otherwise-awful, Paradise poly hives for this purpose.

Dyb dyb dyb

One of the greats sights of the swarming season is the appearance of the first scout bees at the bait hive. First one or two, then a dozen and, within hours or days, hundreds. They check out the entrance and the inside the bait hive. They fly all around the perimeter. They’re unaggressive and you can get up close to watch them at work. If you listen carefully you can hear them pinging into the sidewalls and floor of the bait hive as they move about inside.

They actually probably measure the volume by a combination of walking around the inner walls and determining the mean free path length – the average length of all straight lines from wall-to-wall in the hive – in short flights. For an interesting and easily readable discussion of the physics behind this I recommend the short paper by Nigel Franks and Anna Dornhaus (PDF) How might individual honeybees measure massive volumes?

In my view, this alone is a good reason to use foundationless frames in a bait hive.

Scouts often arrive early at the bait hive and leave late. Their numbers will fluctuate with weather and temperature – they’ll disappear altogether in the rain, but reappear in force once a shower has passed.

Scouting around

This short video was taken about 9am, two or three days before a large prime swarm occupied the bait hive. The first scout bees I’d seen had been almost two weeks previously. By midday there were hundreds of bees checking the hive.

However, if you look closely, their behaviour is distinctively different from a colony ‘in residence’. They’re much more hesitant in entering the hive and they tend to check the immediate environment much more closely. In contrast, foragers returning to a colony don’t bother doing a couple of laps of the hive … they approach directly and enter with minimal delay.

Seeley’s swarms

The definitive guide to how scout bees choose suitable locations and then ‘persuade’ the swarm to relocate is Honeybee Democracy by Tom Seeley. This is an outstanding book, beautifully written and illustrated.

Swarm of bees

Swarm of bees

Swarming is a two-stage process. The queen and flying bees leave the hive and settle nearby – on a branch, a fence post or (irritatingly) the top of a nearby conifer – creating the classic ‘beard-shaped’ cluster of bees. If you’re lucky with your timing and their location you can knock these into a box and, voila, you have a new colony.

Tom Seeley describes his own studies (based on the equally elegant work of Martin Lindauer in the 1950’s) that determine how scout bees convince the swarm to move from this temporary staging post to a new nesting location – a tree cavity, the church tower or your bait hive. The scout bees use a variation of the classic waggle dance – on the surface of the swarm hanging in the tree – to ‘persuade’ other scouts to check out the location they’ve found. Through repeated cycles of recruitment and reinforcement a consensus is reached and the scouts then lead the swarm to their new home.

That’s the abridged version. Read the book. There are subtleties and anecdotes throughout Honeybee Democracy that mean it’s the sort of book you can go back to time and time again, learning something new each time.

Early scouts

I was puzzled by the swarm that arrived in my bait hive. The first scouts appeared early in the first week of May. I was abroad from the 7th to the 14th and confidently expected the swarm to be waiting for me when I got back. However, it wasn’t until at least another week had elapsed – during which scout bee interest continued unabated – that the swarm arrived.

Honeybee democracy

Honeybee democracy

I went back to Honeybee Democracy and re-read the second chapter (‘Life in a honeybee colony’) and learnt – or was reminded – that there are early scout bees that are able to judge both nest site quality and the state of the colony preparing to swarm. These scouts are at work before the colony swarms. Uniquely these bees are judging both the availability and suitability of new homes and the readiness of the colony to swarm.

They can also tell whether it’s a nice day. The coincidence of these factors – good weather, readiness of the colony to swarm (i.e. sealed queen cells) and potential nest sites – initiate a behavioural change in these scouts that leads to the colony swarming.

Are these scouts the earliest sign of swarm preparation?

What Seeley doesn’t say is just how early in the swarming cycle these scout bees start their initial explorations.

Queens take 16 days to develop from new-laid eggs to eclosion, and just nine days to the sealing of the queen cell. If we assume that the first scouts I saw were from the same hive that subsequently swarmed (and delivered itself to my bait hive) then these scouts were out and about well-before queen cells were even started.

Of course, I have no way of telling whether the first scouts I saw were from the same colony that finally swarmed and arrived. Nevertheless, it’s an interesting thought. Perhaps scout bee interest in a bait hive pre-dates the first definitive swarm preparation signs beekeepers can usually recognise – the appearance of charged queen cells?

Considering the density of beekeepers (by which I mean apiaries 😉 ) in the UK it’s not easy to see how this would be useful … unless you’re the only beekeeper on an isolated island.

However, if you see do scout bee activity at your bait hives it might be worth being more assiduous than usual when checking your own colonies in the neighbourhood.

 


Dyb dyb dyb is an abbreviation for ‘do your best‘. This was part of a cub (not scout) ceremony and was followed by Dob dob dob (‘do our best‘). It was abandoned in the late sixties, but lives on in tricky questions on Qi.

Colophon

Scouting for Boys

Scouting for Boys …

The title of this post is a play on ‘Scouting for Boys‘, the book on Boy Scout training, written and illustrated (originally) by Robert Baden-Powell and published in 1908. The book contains sections on scoutcraft, woodcraft, tracking, camp life, endurance, chivalry, life saving and patriotism. It was the inspiration for the scout movement and Baden-Powell was the founder and first Chief Scout of the Boy Scouts Association (and the founder of the Girl Guides). It is estimated that 4 million copies sold in the UK alone, with global sales in the 20th Century exceeding 100 million.

The book even contains reference to honey bees with the statement that bees form a ‘model community, for they respect their Queen and kill their unemployed’.

The Boy Scouts of America used to offer merit badges in Beefarming (1915-1955) and Beekeeping (from 1955). The Beekeeping merit badge was discontinued in 1995.

Scouting for Girls is an English pop rock band. They have recently announced their 10th Anniversary Tour (Oct/Nov 2017) which means they’re much too new for me to know any of their music 😉

 

Bee lining for Christmas

Bee hunting

Bee hunting

Following the Wild Bees† by Tom Seeley is an entertaining little book that would make an ideal Christmas present for a beekeeper. It describes the methods used to locate feral colonies (or any colonies actually) by bee hunting or bee lining, so called because you follow the line or direction they return to the colony from a nectar source you provide. It’s an ideal Christmas book for two main reasons; it’s a summer activity, so will remind the reader that balmy sunny days will – finally – replace the cold, dark days of winter and, secondly, it will allow the enthusiast the time to build the essential two-chambered ‘bee lining box’ which is used to trap, feed and mark the bees being ‘lined’.

I don’t intend to provide a précis of the method … you should buy and read the book for that. However, as a taster, you can visit the companion website to the book or watch a short video of Tom Seeley bee hunting …

Tom Seeley is a Professor in the Department of Neurobiology and Behaviour at Cornell University. He is a highly respected entomologist and, unlike many scientists, writes in an engaging and accessible manner. He explains complicated experiments in layman’s terms and makes parallels between his observations on honey bees and wider societal issues. Anyone who has read his book “Honeybee Democracy” will appreciate how simple and elegant his description of the science is.

His explanation of bee hunting is no less clear. Following the Wild Bees is really a ‘how to’ guide, rather than a popular science book, though each chapter does contain a separate section on the science behind the ‘how to’, together with lots of anecdotes. The book is subtitled “The craft and science of bee hunting”. If you’re not aware of feral colonies in your own area this book might help you find them … however, if you live in an area with lots of other beekeepers it will probably just help you find their apiaries (and you can also do that with Google maps).

Wild? They’re livid feral.

The most up-to-date review of feral colonies in the UK can probably be found in Catherine Thompson’s 2012 doctoral thesis (brace yourself … this links to PDF of the 173 page thesis!). Catherine surveyed a number of feral colonies in the UK and showed that, although there were limited but significant genetic differences between feral colonies and managed colonies, the feral colonies were no more ‘native’. Catherine also neatly demonstrates the limitations of studying wing veination (morphometry) as an indicator of genetic purity – it usually isn’t. Feral colonies are essentially relatively recent swarms lost by local beekeepers.

Why ‘relatively recent’?

High levels of DWV

High levels of DWV …

The feral bees Catherine studied had much higher levels of deformed wing virus (DWV), both indicative of – and as would be expected of – uncontrolled Varroa infestation. Therefore, whilst it might appear appealing to have colonies of wild bees in the local church tower they’re almost certainly riddled with DWV and Varroa. This presumably explains why so many of the feral colonies Catherine analysed died during the study period (2.5 years). The swarms lost by beekeepers (that occupy the church tower for example) quickly succumb to the detrimental effects of uncontrolled Varroa replication and the consequent transmission of viruses. Furthermore, through the activities of robbing and drifting that feral colony is likely to act as the generous donor of viruses and mites to the local managed beekeepers hives.

Perhaps not so appealing after all.

Conclusions

I recommend you read Following the Wild Bees. Do so sitting in front of a roaring log fire in mid-winter. Plan and build a ‘bee lining box’ (or buy one) and consider where you might go prospecting for ‘wild’ bees once the long summer days return.

But also plan to put out bait hives to catch swarms (yours or others) and clip your queens … every one ‘lost’ is an opportunity to establish a future source of Varroa and virus infestation.

Under offer ...

Under offer …


 

 ISBN-10 0691170266 … it’s worth shopping around for a copy as the prices vary widely (at the time of writing). WH Smiths had it for well under a tenner recently.

Bee shed inspections

A brief update on how things have been progressing in the bee shed. This is my first full season keeping colonies full-time within a shed or building though I’ve successfully overwintered mini-nucs in an unheated greenhouse in the past.

Under construction ...

Under construction …

When installed at the end of last season there was almost no need to open the hives, so it’s only this Spring that the pros and cons of the bee shed have begun to be properly understood.

The colonies are completely enclosed with simple tunnels leading to exits on the East/South East face of the shed. All the colonies are housed in standard National cedar boxes or poly nucs. Other than clear perspex insulated crownboards, there is no additional insulation and the shed is not heated. The shed is situated in open parkland with woodland and arable land nearby containing good forage and there is a permanent water supply nearby.

Colony development and Varroa loads

Colonies went through the winter in single National brood boxes, fed with fondant and treated with oxalic acid by vaporisation in September (before moving them to the shed) and in midwinter. The first inspection was conducted in late March. Colonies were building up well and were significantly stronger than colonies headed by sister queens in the same apiary or in my other apiary. Between late February and early May colonies dropped only 3-4 mites in total, with Varroa boards located within pull-out trays in the hive floor. I’m sure I missed a few mites, but doubt it was very many. We’ve recently uncapped a full frame of drone brood – each cell uncapped individually – and found no Varroa present. Mite levels are therefore reassuringly low – for reasons to be discussed in a future post – with no signs of DWV-related disease.

Varroa tray ...

Varroa tray …

Since mid-April colony development has been very good and they are now on double National brood boxes with 2-3 supers. A fourth super went onto one colony on the 25th of May and the stack now nearly reaches the shed roof. A four frame nuc has been split off one colony already to cool it down a little. Quite a bit of developing brood has also been harvested at weekly intervals for our research, usually by simply cutting a big slab out of the middle of a frame. This has probably also held the colonies back a bit and it’s only now I’m starting to plan for swarm prevention/control.

Inspections

Inspections have been easier than expected. These colonies are headed by queens with reasonable genetics (Heinz queens – local mongrels of 57 varieties, reared by me in 2015). The bees are steady on the comb and tend not to fly up at you when the crownboard is lifted. They’re nothing particularly special, but would be considered reasonably placid and non-aggressive.

The colony is gently smoked from outside the shed (through the entrance tunnel) and a small amount is wafted under the crownboard or between the QE and the bottom super. After allowing them to settle the supers and crownboard are removed and placed outside on an overturned roof. The queen excluder and adherent bees are also left standing outside (unless it’s cold when the bees are shaken off into the open hive).

Inspecting the colony is straightforward. Any frames removed to make space are rested on the hive stand. Double brooded colonies are split into two, with one box stood aside on an eke on the roof of an adjacent hive roof. Inevitably, the queenless half of the split tends to get tetchy within a few minutes, so it’s best to deal with them first. When frames need to be shaken free of bees this can be done either over the open hive or, better still, directly into a gap between the frames. If done outside many of the nurse bees on the frame fail to get back to the hive (they’ve probably not been on orientation flights yet).

The smoker is usually stood just outside the shed door … if you keep it in the shed during inspections you can end up being kippered 😎

Flying bees

Perhaps surprisingly, even going through all 22 frames in a double colony, the shed does not fill with a maelstrom of flying bees. Undoubtedly this is partly because they’re reasonably calm colonies. Those that do fly rapidly find the window or open door and make their exit. When I first started doing inspections in the bee shed I’d manually help the stragglers outside after reassembling the hive. It turns out that there’s really no need … almost all the bees quickly vacate the shed by making a beeline ( 😉 ) for the bright lights of the windows or doors.

The great escape ...

The great escape …

Just how quickly the bees leave the shed was emphasised last Sunday when selecting larvae for grafting. I opened and inspected a double brooded colony, found a suitable frame with 24 hour larvae on it and placed it in a two frame nuc for protection. Within 5 minutes I could work without a veil (I react very badly to stings to the face so take particular care over this) without interruption from flying bees.

Weather and temperature

I’m sure that the temperature influences the behaviour of the colonies in the shed. They certainly forage – or perhaps collect water to use fondant or crystallised stores – at lower temperatures than those situated outside. When inspections are conducted on a cold day (say 10-11°C) they are even more steady than usual. However, those that do fly take longer to leave the shed and they can end up clustering in small, rather pathetic, little groups which then need to be scooped up on a hive tool and dropped into the colony. On cool days I don’t leave the supers or QE outside the shed as the bees would rapidly get chilled. Work commitments mean that inspections must be conducted on certain days, so I don’t have the luxury of simply waiting until it’s a bit warmer. Although the shed is unheated the temperature differential between the inside and outside is significant – perhaps 4-8°C – or more if the sun is shining on the window side of the shed. On a warm, sunny day the temperature inside the shed can easily reach the mid-20’s which makes inspections a hot and sweaty activity.

Needless to say, inspections on damp or wet days are much better than on colonies located outside. I avoid days when it’s raining hard, partly for my own comfort to avoid getting wet accessing the apiary, but also because I’d prefer not to force the bees to fly on a really wet day. However, on damp or drizzly days, inspections proceed as normal.

And the bad news is …

Almost everything I’ve written above is positive and my overall initial impression is that the bee shed offers very significant advantages for the sort of beekeeping I need to do. However, there are some drawbacks and design issues that either currently cause problems, or might in the future.

The first is that it’s too small. The shed is 12 x 8 feet and I should have got one at least half as long again. This is largely because it’s also used for equipment storage and has a small table for working on. With four hives I need storage for 8-12 supers, additional brood boxes and spare frames. If I was starting again, knowing what I know now, I’d get an 18 x 10 shed with the intention of housing at least 6 colonies and some additional nucs (by contrast mine will accommodate 4 full colonies and 2 nucs down the sunny side of the shed, with the possibility of 2-3 additional nucs at a squeeze). It’s not only equipment storage that takes up the room … you need considerable room to work as well, with space for turning, stacking and temporary placement of hive parts. Working in the bee shed encourages an efficiency of movement – or causes a lot of collisions – I’d not expected.

Essential storage ...

Essential storage …

Secondly the lighting is – at best – variable. On a sunny morning there’s ample light to see eggs and tiny larvae. However, as the colonies have grown, the added supers restrict the amount of light getting through the windows. On an overcast day, or late in the afternoon, the lighting is pretty hopeless – good enough to see queen cups/cells, good enough to locate the queen, but (particularly on dark frames) too dim to see eggs, small larvae or to check frames for signs of disease. It’s not unusual to have to carry frames outside to inspect them fully. I’m currently investigating 12V LED systems run from a solar panel-charged caravan battery. My only concern is that this might disorientate the bees and slow their exit from the shed during inspections.

Multiple supers ...

Multiple supers …

Thirdly, I should have spent more time designing the hive stands. I made them an inch or so too low which caused some problems with locating the hive entrances centrally in the T&G planks, but was not insurmountable. More problematically, as a consequence of the leg locations it’s difficult to keep the floor clear of hive debris that falls through the OMF. With the Varroa boards in place this isn’t an issue, but when they’re out – which I prefer if there’s a chance of the shed getting very warm – the debris needs to be regularly swept up to keep the shed clean. Some sort of removable debris trays would have been a good addition, but are not easy to fit retrospectively. However, the overall hive stand design – with the legs going through the suspended floor to avoid vibrations – works very well.

Finally, swarm control has yet to be tackled. My preferred simple method is doing a vertical split (or using a Snelgrove board that I’m experimenting with this year) but this requires an upper entrance which, obviously, cannot easily be arranged. One possibility is using the Demaree method of swarm control. Alternatively, it would be straightforward to remove the queen into a nuc and let the colony requeen. Currently I’m trying to postpone the inevitable by removal of some brood, ensuring they have enough space within the brood boxes which I swap (top to bottom, bottom to top) periodically, ensuring they have sufficient space in the supers and keeping a close eye on them. The queens are clipped. If they do swarm they’re likely to end up in a lump outside the hive entrance – the ground is flagged and so they should hopefully be relatively easy to scoop up.


 

Divide and conquer

Tom Seeley (of Honeybee Democracy fame) published an interesting paper in the journal PLoS One recently on “How honey bee colonies survive in the wild: testing the importance of small nests and swarming” – the paper is available as a PDF following this link (Loftus et al., 2016 PLoS One 11:e0150362).

Size matters

Using his normal elegant methodology Seeley formally tested the observed reduction in colony size and increased swarminess (is that a word?) of – feral or otherwise – colonies ‘selected’ to survive without Varroa treatment by simply abandoning them. The hypothesis – based on previous studies and an understanding of the biology of Varroa – was that colonies ‘forced’ to swarm by being confined in small hives would inevitably:

  • lose significant amount of Varroa through the act of swarming
  • experience a brood break so delaying Varroa replication while requeening
  • consequently survive better than large colonies in which pathogen levels inexorably increased to a level that would destroy the colony

Testing the hypothesis

He tested this by establishing adjacent apiaries (so they have the same microclimate) with either small (~40 litres … about the same as a National brood box) or large (~170 litre) volume hives and installing nucs in each which contained similar levels of brood, bees and Varroa. No Varroa control was performed. Those in the small hives were not managed to prevent swarming whereas those in the large hives were – with the caveat that the colony was kept together (i.e. queen cells were destroyed, brood frames were spread and ample supers were added). The study lasted two years, with regular monitoring of the colony strength, Varroa infestation level etc.

High levels of DWV

High levels of DWV …

To cut a long (but nevertheless interesting and worth reading) story short … the results support the original hypothesis. During the first year of the study the colonies developed in a broadly similar manner from transfer of the nuc to the large or small hive in June until the season’s end. However, by the following May the large hived colonies were almost twice as populous as those in the small boxes. This continued until August, with the average adult bee population in the small and large hives being ~10,000 and ~30,000 respectively. During this second season 10/12 small hives swarmed, whereas only 2/12 of the large hived colonies swarmed. In the latter mite levels dramatically increased to >6/100 adult bees (i.e. riddled with the little b’stards – my opinion, Seeley is too polite to comment). For comparison, the picture above has ~100 bees in it, with one visible Varroa, but has lots of overt deformed wing virus disease. In contrast, the small hived colonies – with the exception on one sampling point discussed later – had three to five times fewer mites than seen in the large hived colonies. By the second winter 10/12 large hived colonies had perished whereas only 4/12 small hived colonies had succumbed, and one of these was to a drone laying queen, not disease. Perhaps most tellingly, 7/12 large hived colonies had signs of overt deformed wing virus (DWV) disease – pathetic, tottering newly emerged workers with stunted abdomens and shrivelled wings – whereas none of those in small hives showed obvious disease.

Great … Varroa-tolerant colonies … where can I get some?

A small swarm

A small swarm

So, what does this mean in terms of practical beekeeping? Firstly, it suggests that it is possible to keep honey bee colonies without treatment or intervention. But – and it’s a biggy – the colonies will be too small to collect meaningful amounts of honey and will spend their time and energy swarming instead. 10,000 adult bees does not a colony make, as Aristotle didn’t say. Or at least not a colony that’s of any practical use for the honey-gathering goal of beekeeping. Ted Hooper (“Bees and honey“), and many others, have made the point that one big colony will gather more nectar than two smaller colonies. Secondly, these small colonies will chuck out loads of Varroa-riddled swarms. Seeley has previously demonstrated that swarming colonies lose ~35% of their Varroa load with the bees that leave the colony. Although this clearly benefits the original colony it potentially distributes Varroa-laden bees (and the smorgasbord of viral pathogens that are the real problem) to whichever local beekeeper finally hives them. This explains the need for prompt Varroa treatment of any swarms you might acquire.

On a more positive note this study clearly shows the benefit of a brood break in terms of restricting the replication and amplification of Varroa. Presumably this is primarily due to the 3+ week window with no sealed brood for Varroa to infest, though it may also mean that broodless colonies might get rid of Varroa at a faster rate with no brood present to distract them. It would be interesting to have compared mite levels immediately after swarming and in the subsequent weeks until the new queen starts laying. Randy Oliver has also discussed the benefits of a brood break during empirical development (and computer modelling) of his beekeeping methods for Varroa control. In his forthright manner he explains “Take home message: early splitting knocks the snot out of mite levels“.

Why discuss this if they’re no use for beekeeping … ?

There was one exception to the generally low mite levels in the small hived colonies and that was late summer in the second year when they all exhibited a large spike in Varroa numbers. This was attributed to robbing-out a collapsing, and soon to die-off completely, large hived colony in the adjacent apiary. The two study apiaries were in the same field. This emphasises the points made in earlier posts about the impact of drifting and robbing and the, at least theoretical benefits of, coordinated Varroa control. Of course, ~2 mites per 100 adult bees in the small hived colonies is not really a low number at all. Assuming a colony size of 10,000 adults with 80% of the mites in capped cells the total Varroa load would be ~1000 in the colony, the threshold level above which the NBU consider treatment is required to avoid loss of the colony.

Divide and conquer

The Varroa loss achieved by swarming, coupled with the break in brood rearing, help the colony conquer – or more correctly tolerate – Varroa levels that otherwise rapidly increase and destroy a colony. However, this is neither a practical or acceptable solution to the Varroa problem. ‘Beekeepers’ (an oxymoron surely?) that allow their colonies to swarm indiscriminately both reduce their chance of getting a good honey crop and impose their – potentially Varroa-ridden – swarms on the neighbourhood. This is irresponsible. In contrast, beekeepers who carefully monitor their colonies and use an effective combination of integrated pest management – for example, including an enforced brood break during the ‘June gap’, or a vertical split, perhaps – benefit from large, healthy, honey-laden§ colonies which overwinter better.


§ at least in the good years 😉

Time to BEEHAVE

BEEHAVE ...

BEEHAVE …

I’ve been dabbling with BEEHAVE, a computer simulation of a honeybee colony. It’s not beekeeping, but it’s about as close as you can get in the middle of winter. BEEHAVE was developed by Matthias Becher in the University of Exeter and the paper that describes the model is published and Open Access [PDF]. The model includes a wealth of user-modifiable variables such as forage availability, climate, beekeeping activities and pathogens, and outputs information on colony size, speed of development, age structure, honey stores etc. The BEEHAVE simulation is implemented in the open source language NetLogo and is freely available. The parameters that influence colony development – egg laying rate, drone/worker ratios, forage (nectar and pollen) availability, mite replication rate etc. are all based on measured and published data (or logically extrapolated from this if they don’t exist) so that the in silico performance is a fair reflection of what might be expected in the field.

If you can, do … if you can’t, simulate it 🙂

I’m interested in the rational and effective use of miticides to control Varroa-mediated transmission of DWV (and other viruses) in the hive. Using BEEHAVE and a standardised set of conditions allows predictions to be made of how effective a particular Varroa control might be. For example, here’s a simple question we can try and answer:

How important is a midwinter mite treatment if you’ve treated earlier in the year?

Using BEEHAVE set to all the default conditions and ‘priming’ the colony with just 20 mites on the 1st of January it’s possible to see what happens if no treatments are applied over one or more years. It’s then possible to repeat the predictions with the inclusion of a Varroa treatment. For the purpose of this brief introduction to BEEHAVE I’ve used a miticide which is applied and active for a total of 28 days and which kills 95% of phoretic mites. This might broadly reflect Apiguard treatment (2 x 14 days) or vaporised oxalic acid (OA; 3 treatments at 5 day intervals, but documented to kill mites for up to one month). I’ve additionally looked at the application of a single treatment with oxalic acid in midwinter, again killing 95% of phoretic mites, the sort of effect that OA trickling might achieve if there’s no brood present.

No treatment … they’re doomed

No treatment

No treatment

BEEHAVE modelling is based on a series of underlying probabilities (e.g. likelihood of a developing pupa to become mite associated, likelihood of that being a drone or worker pupa) so doesn’t produce the same results every time it is run¹. For example, the graph above shows adult bee numbers (left axis, blue lines) in an untreated colony for three simulations of up to five years each (horizontal axis), together with the associated mite number (right axis, red lines). Mite number build up strongly as new brood is reared each spring, with mite numbers peaking at ~24,000 in the fourth summer. In the third and fourth winters mite number per bee range from 2-4. The default conditions of 20 mites, coupled with a minimum viable colony size of 4000 bees, results in one colony succumbing in the fourth winter and the two remaining dying in the fifth winter (bee numbers drop to zero). Real studies – with untreated hives in the field – have shown similar outcomes (Martin, 1998 [PDF]) though colonies tend to die between winters 2 and 3, presumably because the input mite populations are higher². In all subsequent graphs the data plotted is the average of three simulations.

One treatment … better than nothing

It’s worth remembering at this point that the advice from the National Bee Unit is that mite numbers in the colony should be maintained below 1000 (Managing Varroa [PDF]). To try and achieve this we need to investigate the influence of applying miticides in the simulation – in mid-June (left graph), mid-September (middle) or late December (right). I appreciate mid-June is very early in the season, but it emphasises an important point.

That’s a bit better 🙂 These plots show the averages of adult bee and mite numbers (using the format shown above, blue for bees, red for mites). None of the in silico colonies expired during the simulation though the mite numbers are dangerously high irrespective of the treatment during the mid/late summer months. Note that range of the scale on the right hand (mite numbers) axis differs in each graph. Treatment in mid-June (left) delays the summer exponential rise in mite numbers and, in terms of overall impact on mite numbers (and consequent adult bee losses) is measurably better than only treating in midwinter (right). Of the conditions tested, mid-September (centre) is clearly the best … Varroa levels are reduced at the same time as the colony starts to contract, leaving the remaining mites less opportunity to reproduce. Maximum colony size remains about the same year on year and Varroa numbers never reach more than one third of those seen in either mid-summer or midwinter treatments. However, not everything is rosy … Varroa levels are dangerously high from the third summer on, and levels are increasing each winter. Remember that these simulations were started with just 20 mites in the colony².

Do your colonies have only ~20 mites in them this winter?

Two treatments … a double whammy

Two optimal treatments

Two optimal treatments

It’s only when you combine early autumn and midwinter treatments that mite numbers are really well controlled. Under the highly optimised conditions – both treatments were set to be 95% effective against phoretic mites – Varroa numbers remain below the NBU recommended maximum of 1000 for the duration of the simulation. Clearly the combination of the mid-September slaughter of phoretic mites, coupled with a midwinter mopping up – when there’s little or no brood present – provides really tight control of Varroa levels. However, the importance of this is perhaps even more apparent when you consider the consequences of a sub-optimal mid-September treatment.

The graph on the left shows the consequences of using a miticide that achieves only 85% efficacy … perhaps reflecting Apiguard usage when the ambient temperature is too low for the thymol to be spread throughout the colony. Under these conditions mite numbers rapidly get out of control. Compare that with the graph on the right which includes an additional midwinter treatment where mite numbers are far better controlled … though only to about the same level as is seen with a 95% knockdown of mites in mid-September (centre graph in the ‘one treatment only’ section, above).

And the answer is …

Occupied bait hive

Occupied bait hive …

Although the majority of miticides are broadly similar in their maximum published efficacy, I suspect that they are often used in a way or under conditions that do not routinely achieve these maxima. For example, the 30 year average September temperature in England is just below 13°C, much lower than the temperatures in which Apiguard efficacy reached the reported maximum of 99%, and lower than the Vita-recommended minimum temperature (15°C). Therefore, the answer to the original question (which was How important is a midwinter treatment if you’ve treated earlier in the year?) is … if there’s any chance the late summer/early autumn treatment was sub-optimal then a midwinter treatment is very important to prevent Varroa levels building up in the colony, resulting in the spread of virulent strains of DWV and other viruses. The other broad conclusion is that miticides are much more effective – in terms of impact against the total mite population – when brood levels are low or absent. That’s why brood breaks coupled with miticide treatments e.g. applying vaporised oxalic acid to a recently hived swarm or one that has moved in to a bait hive, are a very powerful combination to reduce the impact of mites, and the viruses they transmit, on the colony.

There are additional considerations which influence the choice and timing of miticide treatments. In a future post I’ll address the timing of the autumn treatment and the critical development of the overwintering bees that get the queen and the colony through to the following Spring.


¹BEEHAVE provides the ability to model colony development based upon measured and measurable parameters within a honeybee colony. Of course, in the real world a host of factors influence our bees – climate, forage availability, bad beekeeping, good beekeeping, integrated pest management, swarming, queen longevity etc. These are all variable within BEEHAVE but have been left unaltered from the defaults for the purpose of this post in which only the timing and efficacy of miticide treatment was altered. All the data for this post were generated using the rather verbosely numbered BEEHAVE_BeeMapp2015 version.

²Mite levels were deliberately started at a very low level to emphasise how quickly they build up if not controlled. Running the simulations with a higher mite input simply shifts all the graphs to the right e.g. increasing input mites to 200 (not an unreasonable number for many midwinter colonies) with no treatment, results in the virtual colony dying in early December of the third year, with mite levels having reached ~5300 in the first summer and ~19000 in the second.

This is the second in a series of related posts about Varroa control. The first was on drifting in honeybees. I’ve created a separate page that lists these and other posts on the how, why and when of Varroa treatment.

2015 in retrospect

The winter solstice seems like a good time to look back over the 2015 beekeeping year. With the day length about to start increasing, what went right and what went wrong? Back in March I wrote that my plans for the year were different from the usual OSR – swarming – queen rearing – summer flow – harvest – Varroa treatment – feed-’em-up and forget ’em routine as I was moving to Scotland in the middle of the season. Some of these things happened, though perhaps less than in a usual year.

Mid-season memories

Mid-season memories …

Spring – better late than never

Cloak board ...

Cloake board …

The OSR yielded poorly as the spring was cold and late. I didn’t even look inside a colony until mid-April. Colonies were only getting strong as the OSR flowers went over meaning that most of it was missed. The weather was unseasonably cold, with mid-May being 2-3ºC cooler than average. Queen rearing started in the third week of May and although grafting went well, queen mating was really hit and miss, with low temperatures and lots of rain lasting through May and June. On a more positive note, I used a Cloake board for the first time and was pleased with the results (I’ll write about this sometime in 2016 after using it a bit more). I didn’t use any mini-nucs this year as I didn’t want the hassle of dealing with them mid-season when moving North. Instead, I did all of my queen mating in 2-5 frame nucs, often produced as circle splits from the cell-raising colonies. This worked well … and considering the lousy weather was probably a lot less effort than using mini-nucs which would have required constant attention and lots of feeding. Using poly-nucs I could prime them with a frame of brood and a frame of stores and adhering bees, dummy them down and leave 3 frames of foundation (or wherever possible, drawn comb) ready to be used on the other side of the dummy board. Once the queen was mated the colony would build up well and if – as often happened this season – the queen failed to get mated or was lost (drowned?) during mating flights it was easy to unite the queenless unit with a queenright one, so not wasting any resources.

Go forth and multiply

Split board

Split board …

Beginners often find the coordination of colonies for queen rearing, and the apparent difficulty of grafting (it isn’t), a daunting prospect. When I’ve been involved in teaching queen rearing it’s clear that the relatively small scale approach I use (queenright cell raiser, grafting and – usually – mini-nucs) is often still too involved for the very small numbers of queens most beekeepers with just a couple of hives want. It was therefore interesting to raise a few queens using vertical splits, simply by dividing a strong colony vertically and letting the bees do all the work of selecting the best larvae, raising the queen and getting her mated. It has the advantage of needing almost no additional equipment and only requires a single manipulation of the hive (and even that can probably be simplified). Having documented the process this season I’ve got a few additional things I’d like to try in 2016 to make it even easier and to allow better stock selection. After that it will be incorporated into queen rearing talks and training.

Changes in Varroa treatment

The big change in Varroa treatment in the UK was the licensing of Api-Bioxal. Whether or not you consider the 50-fold or more cost of VMD-approved oxalic acid (OA) over the generic powder is justified is really a separate issue. Oxalic acid is an effective miticide and, if administered appropriately, is very well tolerated by the colony. Despite the eyewatering markup, Api-Bioxal is significantly less expensive than all other approved miticides. For the small scale beekeeper it’s probably only 20% the cost of the – often ineffective – Apistan, or either Apiguard or MAQS. Under certain circumstances – resistant mites, low temperatures or the potential for queen loss – there are compelling reasons why OA is preferable to these treatments. If we hadn’t been using OA for years the online forums would be full of beekeepers praising the aggressive pricing strategy of Chemicals Liaf s.p.a in undercutting the competition. Of course, if we hadn’t been using generic OA for years Api-Bioxal would probably be priced similarly to Apiguard 🙁

Sublimox in use

Sublimox in use …

I’ve used OA sublimation throughout 2015 and been extremely impressed with how effective it has been. Mite drops in colonies treated early in the season remained low, but increased significantly in adjacent colonies that were not treated. I treated all swarms caught or attracted to bait hives. Some were casts and there were no problems with the queen getting out and mated (though the numbers of these were small, so statistically irrelevant). Late season treatment of colonies with brood also seems to have worked well. Mite drops were low to non-existent in most colonies being monitored through late autumn. Colonies get mildly agitated during treatment with a few bees flying about under the perspex crownboard (you can see a couple in the image above … this was a busy colony) and a few more rapidly exiting the hive after the entrance block is removed. But that’s it. The colony settles within a very short time. I’ve seen no loss of brood, no obvious interruption of laying by the queen and no long-term detrimental effects. Sublimation or vaporisation of OA can – with the correct equipment – be achieved without opening the hive. I expect to use this approach almost exclusively in the future.

Moving bees

Moving colonies from the Midlands to Fife was very straightforward. Insect netting was an inexpensive alternative to building large numbers of travel screens. It’s the same stuff as Thorne’s sell for harvesting propolis so I’ve got enough now to go into large scale propolis production 😉 The colonies all settled in their temporary apiaries well and I even managed a few supers of honey during the latter part of the season.

Small hive beetle reappeared in Southern Italy shortly after the honey harvest was completed there. Che sorpresa. This was disappointing but not unexpected (and actually predicted by some epidemiologists). As I write these notes the beetle had been found in 29 Calabrian apiaries between mid-september and early December. It’s notable that there’s now a defeatist attitude by some contributors to the online forums (when not if the beetle arrives here) and – since not everyone are what they seem on the interweb – there are some playing down the likely impact of the beetles’ arrival (and hence the demand to ban imports) because they have a vested interest in selling early season queens or nucs, either shipped in or headed by imported queens. I don’t think there’s any sensible disagreement that we would be better off – from a beekeeping perspective – without the beetle, it’s just that banning imports of bees to the UK (admittedly only a partial solution) is likely to cause problems for many beekeepers, not just those with direct commercial interests. I remain convinced that, with suitable training and a little effort, UK beekeeping could be far less dependent on imports … and so less at risk from the pathogens, like small hive beetle. Or of course a host of un-tested for viruses, that are imported with them.

And on a brighter note …

Bee shed ...

Bee shed …

The new development in the latter part of the year was the setting up of a bee shed to house a few colonies for research. This is now more or less completed and the bees installed. It will be interesting to see how the colonies come through the winter and build up in spring. The apiary has colonies headed by sister queens both in and outside the bee shed so I’ll be able to make some very unscientific comparisons of performance. The only problem I’ve so far encountered with the shed was during the winter mite treatment by oxalic acid vaporisation. In the open apiary the small amount of vapour that escapes the sealed hive drifts away on the breeze. In the shed it builds up into a dense acidic hazy smoke that forced me to make a rapid exit. I was wearing all-encompassing goggles and a safety mask so suffered no ill effects but I’ll need an alternative strategy for the future.

Due to work commitments, house, office and lab moves, things were a lot quieter on the DIY front this year. The Correx roofs have been excellent – the oldest were built over a year ago and are looking as good (or as bad, depending on your viewpoint) as they did then. They’ve doubled up as trays to carry dripping supers back from the apiary and I’ll be making more to cover stacks of stored equipment in the future. Correx offcuts were pressed into service as floors on bait hives, all of which were successful.

With well-fed colonies, low mite counts, secure apiaries and lots of plans for 2016 it’s time to make another batch of honey fudge, to nervously (it’s got hints of an industrial cleaning solution) try a glass of mead and to finish labelling jarred honey for friends and family.

Happy Christmas

Lomond Hills and OSR

Lomond Hills and OSR